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Abstract—Most sensor networks employ distributed and dynamic routing protocols. The flexibility that each node can choose the best

forwarder from a diverse candidate set could offer excellent routing performance when the network is highly dynamic. However, it

sacrifices routing predictability since it is possible that routing loops are frequently formed. Can we increase the network predictability

by controlling the network? As a step towards solving this problem, we introduce FlexCut, a flexible approach for cutting off wireless

links, which essentially limits the candidate forwarder set of each node. Unlike existing SDN solutions, FlexCut introduces flexible

control over existing distributed and dynamic routing protocols. FlexCut can trade arbitrary amounts of routing diversity for better

network performance by exposing to network operators a parameter which quantifies the aggressiveness. We propose novel

algorithms, both centralized and distributed, to cut off user-defined number of links so that loops can be alleviated while routing

flexibility can be preserved to the largest extent. We evaluate FlexCut extensively by both testbed experiments and simulations. Results

show that FlexCut improves the performance by 40% � 90% compared with a baseline algorithm in terms of our optimization goal.

Results also show that FlexCut can improve the network performance of a sensor network by 20% � 35%, 30% � 50%, 25%

respectively, in terms of packet delivery ratio, transmission delay, and radio duty cycle.

Index Terms—Wireless sensor network, routing control, link cutting
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1 INTRODUCTION

MOST sensor networks employ distributed and dynamic
routing protocols. In these protocols, each node makes

its own decisions on choosing its next-hop forwarder (i.e.,
parent) and the overall routing topology can be dynamically
optimized with environmental changes. The Collection Tree
Protocol (CTP) [1] in TinyOS is an instance of distributed
and dynamic routing protocol with which each node regu-
larly estimates the expected number of transmissions (ETX)
[2] to the sink and dynamically selects the next-hop for-
warder with the minimum ETX along the path.

The flexibility that each node can choose the best forwarder
from a diverse candidate set could offer excellent routing per-
formance when the network is highly dynamic since the node
can easily switch its forwarders. However, it sacrifices routing
predictability since it is possible that routing loops can be fre-
quently formed. This is because the routing information
maintained by each node cannot always be up-to-date and
each node does not have a consistent view of the entire net-
work. Once there are routing loops in the network, the perfor-
mance rapidly degrades.

GreenOrbs is a real-world wireless sensor network con-
sisting of more than 400 nodes deployed in a forest, cover-
ing an area of about 60,000m2 [3]. Each sensor node delivers

packets to the sink node with a period of 10 min. The appli-
cation uses TinyOS and its network protocols, including the
TinyOS LPL MAC protocol (with a sleep interval of 500 ms)
for achieving low duty cycling and the CTP routing protocol
[1] for multihop forwarding.

The CTP protocol uses the number of expected transmis-
sions (ETX) [2] as a routing metric. Each CTP node main-
tains an estimate of its ETX of its path to the sink node. A
given node’s (path) ETX is the sum of its next hop plus the
link ETX from this node to the next hop. When a node
receives a packet to forward, it compares the ETX of the pre-
vious hop (carried in the packet) with its own. The sink
node advertises an ETX of zero and ETX must always
decrease when a packet traverses over a path. Hence, if the
transmitter’s ETX is not larger than the receiver’s, the topol-
ogy information is stale and there may be a routing loop. In
this case, the receiver increments its loop counter. Fig. 1
shows the radio duty cycle ratio and the loop counter of a
particular node in the network. Since the radio consumes a
large fraction of energy on a node [4], a low radio duty cycle
is usually preferred so that a node can work for a long life-
time. From Fig. 1, we can clearly see that the node’s radio
duty cycle becomes high when its measured loop counter is
also high. This is because when routing loop happens, the
energy is wasted on forwarding packets involved in the
loops.

Can we increase the network predictability by control-
ling the network? The idea of Software-Defined Networking
(SDN) can increase the network predictability as it enables
centralized and direct control of the forwarding behavior.
There are, however, significant challenges in directly apply-
ing SDN to sensor networks since existing solutions for
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networks with IP-based forwarding cannot well adapt to
high dynamics in wireless ad hoc networks.

As a step towards solving this problem, we introduce Flex-
Cut, a flexible approach for cutting off wireless links, which
essentially limits the candidate forwarder set of each node.
Unlike existing SDN solutions [5], FlexCut introduces flexible
control over existing distributed and dynamic routing proto-
cols. FlexCut can trade arbitrary amounts of routing diversity
for better network performance by exposing to network oper-
ators a parameter awhich quantifies the aggressiveness. In its
most conservative form (a ¼ 0), no link is cut off so that the
largest routing flexibility can be preserved. In its most aggres-
sive form (a ¼ 1), FlexCut cuts off the minimum number of
links so that the largest predictability can be achieved by
guaranteeing that routing loops can never occur. By specify-
ing and tuning this parameter, network operators can conve-
niently control the routing behaviors of the network.

We model the network as a directed graph with link
weights. Each node in the graph points to its candidate for-
warders. In the original graph, packets can follow directed
links that form loops. The goal of FlexCut is to cut off user-
defined number of links (determined by the aggressive param-
eter a) so that loops can be alleviated while routing flexibility
can be preserved to the largest extent. We find that our prob-
lem is similar to a well-studied NP-complete problem called
minimum feedback arc set (FAS) whose goal is to find amini-
mum edge set C from a directed graph G such that G � C is a
DAG. Existing heuristic solutions for FAS [6], [7], [8] cannot
directly be applied because (1) they do not guarantee the
connectivity from every node to the sink node; (2) they do
not consider link weights. We propose novel algorithms for
addressing these problems. Centralized algorithms incur
large communication overhead. To reduce this overhead, we
further propose a distributed algorithm in which each node
locally cuts off the links in a distributed manner after receiv-
ing the network-level aggressiveness parameter.

We propose an abstraction called FlexCutwhich includes a
series of algorithms. aCut (a ¼ 1) and gCut (0 � a � 1) are
both centralized algorithms while dCut (0 � a � 1) is a dis-
tributed algorithm. We implement our algorithms above the
link layer and below the network layer (i.e., L2.5) so that they
can potentially benefit many other routing protocols, e.g., the
more recent RPL protocol [9]. We evaluate FlexCut exten-
sively by both testbed experiments and simulations. Results
show that FlexCut improves the performance by 40% � 90%
comparedwith a baseline algorithm in terms of our optimiza-
tion goal. Results also show that FlexCut can improve the

network performance of a sensor network by 20% � 35%,
30% � 50%, 25% respectively, in terms of packet delivery
ratio, transmission delay and radio duty cycle.

Our work differs from prior routing optimization works
[10], [11], [12], [13] in two important ways. First, most existing
work targets network developers while our work targets net-
work operators. FlexCut can be regarded as a middleware
above the routing protocol and could benefit many layer 3
routing protocols. Network operators have the choice to select
different routing protocols and flexibly control the routing
behavior. Second, most existing approaches are usually
designed for a fixed tradeoff among different goals. For exam-
ple, existing loop-free protocols [10], [11] ensure the loop free
property of the network but sacrifice the routing flexibility to
a large extent. Our work provides an abstraction which can
trade arbitrary diversity for better network performance.

We summarize our contributions as follows:

� We propose an abstraction for controlling the rout-
ing behavior of a sensor network.

� We propose novel algorithms, both centralized and
distributed, for cutting off user-defined number of
wireless links.

� We implement FlexCut and evaluate its performance
by both testbed experiment and simulations. Results
show that FlexCut can significantly improve the net-
work performance in terms of three primary metrics.

The rest of this paper is structured as follows. Section 2
gives a motivating example. Section 3 gives the network
model and notations used in this paper. Section 4 formulates
our problems. Section 5 presents the centralized algorithm.
Section 6 presents the distributed algorithm. Section 7 shows
the evaluation results. Section 8 introduces the related work,
and finally, Section 9 concludes this paper and gives future
research directions.

2 MOTIVATING EXAMPLE

To illustrate the motivation of our work, we consider the
example network shown in Fig. 2a. In this figure, S denotes
the sink node while A and B denote the ordinary nodes deliv-
ering data to the sink. The figures on the links denote the long-
term link qualities. The quality of a link is usually measured
as the packet reception ratio (PRR) over the link. Thus, a link
quality of 0.9 means that there is a 0.9 probability for success-
fully delivering a packet over the link. Since ETX denotes the
expected number of transmissions, the ETX of a link is calcu-
lated as the inverse of its PRR. The ETX of a path is calculated
as the sumof ETXs of links residing on the path [2].

In most cases, B transmits data via path B–S and A trans-
mits data via path A–B–S. A’s ETX over the path A–B–S is 1/

Fig. 1. The loop counter and radio duty cycle of a particular node in
GreenOrbs [3].

Fig. 2. A motivating example.
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0.9 + 1/0.9� 2.2 and B’s ETX over the path B–S is 1/0.9� 1.1.
However, it is possible that the link quality of BS suddenly
degrades to 0.1. In this case, a temporal loop occurs since B
will choose A as its parent (update its path-ETX as 3.3) and A
insists on choosing B (update its path-ETX as 4.4). This is
known as the classic count-to-infinity problem. In order to
avoid the unpredictable performance caused by temporal
loops, wewould like to prevent the formation of loops by cut-
ting off some links. For example, if the link BA is cut off, it is
guaranteed that therewill be no loops.

However, it is not always desired that we simply trans-
form the network into a DAG. Cutting off links means fewer
possibilities for parent selection. In Fig. 2a, B has two
choices while in Fig. 2b, B has only one choice. It is possible
that the original network (Fig. 2a) yields better performance
than the DAG (Fig. 2b). Consider the case when the link BS
suddenly degrades to 0.1 and the link AS suddenly
increases to 1. For the DAG network, the data delivery per-
formance of B also degrades. For the original network, the
data delivery performance of B keeps high since there will
be no loop as A chooses S directly.

This motivates us to design a general method for cutting
off user-defined number of links. We would expect that net-
work operators can use our abstractions via a configurable
parameter: Flexcut(a). The value of a determines the
user-defined number of links. When a ¼ 1, our method will
transform the original network into a DAG while maintain-
ing the maximal forwarding diversity. When a ¼ 0, our
method will cut off no links.

3 NETWORK MODEL

Wemodel the network as a directed graph GðV;EÞwhere V is
the set of nodes/vertices, and E is the set of directed links/
edges, pointing from a node to its candidate forwarder/par-
ent. The candidate forwarder set of a node u is denoted as
F ðuÞ. The child node set of a node u is denoted as ChðuÞ. We
denote the link that incidents to vertices u and v by uv where
v 2 F ðuÞ. Each link has a linkweight, being the long-term link
quality of that link.We denote the link quality of uv as quv.

We would like to cut off a set of links in G to limit the for-
mation of loops. We use C to denote the set of links to be
cut off. The resultant graph is denoted as G0.

We introduce the following notations:

� Diversity. The diversity of a node quantifies the proba-
bility that a node can successfully forward the data to
one forwarder.We use the following equation to define
u’s diversity

DF ðuÞ ¼ 1�
Y

v2F
ð1� quvÞ; (1)

where F denotes the forwarder set of u. For the exam-
ple shown in Fig. 2b, B’s diversity is 0.9. For the exam-
ple shown in Fig. 2a, B’s diversity is 0.99. We can see
that increasing the forwarder set increases the diver-
sity as a node hasmore choices for forwarding its data.

� Reduction ratio of diversity. The reduction radio of a
node’s diversity quantifies how much the diversity
degrades by cutting off some links. We use the follow-
ing equation to define u’s reduction radio of diversity

RCðuÞ ¼ DF ðuÞ �DF 0 ðuÞ
DF ðuÞ ; (2)

where C denotes the set of cutoff links, F denotes the
forwarder set of u in the original graph and F 0 denotes
the forwarder set of u in the graph with edges inC are
removed.

4 PROBLEM FORMULATION

We first formulate the problem in the most aggressive form,
i.e., cut off links to guarantee no loops exist. We then formu-
late the problem in the general form in which the number of
cutoff links are user-defined.

4.1 Problem in the Most Aggressive Form

In the most aggressive form, we would like to transform the
original graph into a DAG so that no loops can occur. We
also need to guarantee that every node has forwarding
paths towards the sink. We would like to minimize the max-
imum diversity reduction ratio. This problem is similar to
the max-min fair allocation of the bandwidth for multiple
flows in a network. From the perspective of routing flexibil-
ity and performance, a small diversity reduction ratio is pre-
ferred for every node in the network. For fairness, we would
like to minimize the maximum diversity reduction ratio so
the parent selection flexibility will not be significantly
affected for any node in the network. Note that minimizing
the average diversity reduction ratio is not a desirable met-
ric because there exist chances that a particular node has a
very large diversity reduction ratio while all other nodes
have small or no diversity reduction. This particular node
may have very poor connectivity to the sink node.

The problem is formulated as follows:

Input The weighted directed graph G
Output The set of cutoff links CðGÞ

Goal min max
u2V

RCðuÞ
s.t. 1. 8u 2 V , 9 a direct path from u to the sink in G0.

2. G0 is a DAG.

We denote the solution of this problem as C1.

4.2 Problem in the General Form

In the general form, we would like to cut off user-defined
number of links to limit the impact of potential routing
loops. For this purpose, we introduce a user-defined aggres-
siveness parameter a which should be defined as a normal-
ized factor quantifying different number of links to be
pruned. We also need to guarantee that every node has for-
warding paths towards the sink. The constraint is similar,
i.e., to minimize the maximum diversity reduction ratio.

The problem is formulated as follows:

Input 1. The weighted directed graph G.
2. The aggressiveness parameter a:

Output The set of cutoff links CaðGÞ.
Goal min max

u2V
RCaðuÞ

s.t. 1. 8u 2 V , 9 a direct path from u to the sink in G0.
2. Ca � C1 and jCaj ¼ ajC1j.
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We can see that this problem formulation is general: when
a ¼ 0, G0 ¼ G and the original network is unchanged; when
a ¼ 1, the problem is similar to that in the most aggressive
form, guaranteeing that no loop can occur.

Note that it is also possible to define a as a relative and nor-
malized factor for the minimization purpose of the optimiza-
tion goal. In our current work, we define a as a multiplying
factor on the number of links to be pruned, i.e., jCaj ¼ ajC1j,
so that it can be easily manipulated in our algorithms (gCut
and dCut).

At the first glance, our problem is closely related to the
well-known Feedback Arc Set problem [6] whose goal is to
find a minimum edge set C from a directed graph G such that
G � C is a DAG. But in fact, these two problems are quite dif-
ferent. First, our problem requires that each node in the final
graph G � C remains connected to the sink node so that its
generated data packet can reach the sink node. This additional
requirement changes radically the nature of the problem. It is
easy to construct examples where the optimal FAS problem
for a graph violates the connectivity of the network graph.
Second, our optimization goal is to minimize the maximum
diversity reduction ratio, instead of minimizing the number
of edges to be removed. Therefore, existing algorithms for the
FAS problem cannot be directly applied to our problem.

5 CENTRALIZED ALGORITHM

In this section, we would like to develop centralized algo-
rithms to solve the problems formulated in the previous
section.We first develop algorithms for the first problem, i.e.,
to find the most appropriate edge set C1. We then develop
algorithms for the second problem, i.e., to find the most
appropriate subset of edges Ca from C1. Finally, we discuss
some practical issues.

5.1 Algorithm for the First Problem

We would like to borrow existing algorithms for the FAS
problem to solve our problem. Unfortunately, existing algo-
rithms do not address the following challenges:

� How to ensure a directed path from every node to
the sink?

� How to consider link weights?
We use the example shown in Fig. 3 to illustrate these

challenges. The key idea of a heuristic algorithm for the
minimum FAS problem is to sort the network vertices into a
sequence according to a specific strategy, from the highest

rank (sequence head) to the lowest rank (sequence tail). The
edges from a high rank to a low rank remain in the DAG,
and edges from a low rank to a high rank are removed from
the original graph. In this way, the resultant graph is a
DAG. Formally, the following rules are applied to deter-
mine the output sequence.

� Put the nodes with zero out-degree at the tail of the
sequence.

� Put the nodes with zero in-degree at the head of the
sequence.

� Sort the nodes according to a metric m which is
defined as the difference of in-degree and out-degree
of a node, say u, i.e., mðuÞ ¼ dinðuÞ � doutðuÞ. The
nodes with large metric values are put near the tail
of the sequence.

� Remove the node and its associated edges whenever
it is put into the sequence.

After applying the above algorithm into the network
shown in Fig. 3a, the output sequence will be ðA;C;E;D;
B;SÞ. Therefore, the cutoff links areC ¼ fBA;DCg. The resul-
tant DAG is shown in Fig. 3b.

We can observe two significant problems in this algorithm.
(1) It does not ensure a directed path from every node to the
sink. For example, in the resultant DAG shown in Fig. 3b,
nodes B;C;D;E have no directed path to the sink, implying
that we can not collect data from these nodes. It is unaccept-
able. (2) It leads to low forwarding performance since it does
not consider link weights. For example, in the resultant DAG
shown in Fig. 3b, a high quality linkDC (with link quality 0.9)
is cut off, resulting in a high diversity reduction ratio at node

D: RfBA;DCgðDÞ ¼ 0:95�0:5
0:95 ¼ 0:45

0:95. If two low quality links CD,

CE were cut off whileDC remains in the graph (the resultant
graph is also a DAG), the impact to node C would be much
smaller, i.e.,RfBA;CD;CEgðCÞ ¼ 0:888�0:8

0:888 ¼ 0:011
0:111.

In order to address the above two challenges, we propose
a novel algorithm. In each step, our algorithm explicitly con-
siders connectivity to the sink when a node is to be added
near the tail of the sequence, ensuring there exists a directed
path between a node and the sink. Our algorithm adopts a
new metric to consider wireless link qualities and node for-
warding diversity so that the maximum diversity reduction
ratio is kept small.

The newmetric, diversity preserving ratio, is defined by the
following formula:

Fig. 3. Examples. (a) The original network. (b) The network after applying Eades’ algorithm [6]. (c) The network after applying the enhanced Eades’
algorithm (EEA). (d) The network after applying aCut.
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m0ðuÞ ¼ DF 0ðuÞðuÞ
DF ðuÞðuÞ

; (3)

where F 0ðuÞ denotes the forwarder set of u with each ele-
ment already in the tail of the sequence during the execu-
tion of the algorithm when a set of backedges have already
been removed.

For example, we use Fig. 2a to show the case during the
execution of the algorithm. Both nodes A and B have two out-
going edges in the original graph. In the current step, both A
and B have outgoing edges pointing to S which is a node
already in the tail of the sequence. If A was added into the tail
of the sequence in this step, edge AS will remain in the final
DAG and the other outgoing edgeABwill not exist in the final

DAG. In this step, m0ðAÞ ¼ 0:2
0:92 and m0ðBÞ ¼ 0:9

0:99 according to

the definition of the metric defined in Eq. (3). The algorithm
tends to put the node with large metric value near the tail of
the sequence, i.e., B in this case. The reason is explained as
follows:

1) If we put B into the tail of the sequence in this step,
the diversity reduction ratio of B is 0:09

0:99 and the diver-

sity reduction ratio of A is at most 0:72
0:92. Hence the

maximum diversity reduction ratio among A and B
is at most 0:72

0:92.

2) If we put A into the tail of the sequence in this step,
the diversity reduction ratio of A is 0:72

0:92 and the diver-

sity reduction ratio of B is at most 0:09
0:99. Hence the

maximum diversity reduction radio among A and B
is exactly 0:72

0:92.

Since our goal is to minimize the maximum diversity
reduction ratio in the network, the first strategy is preferred
since it yields better performance than the second strategy.

Algorithm 1 shows the pseudocode of our algorithm.

Algorithm 1. Aggressive Cutoff Algorithm (aCut)

Input: Weighted directed graph GðV;EÞ
Output: Set of cut edges C
1: C  f;
2: s1  f; s2  sinkNode;
3: P  set of nodes having outgoing edges to sinkNode;
4: while js1j þ js2j < jV j do
5: for u: u 2 V � s1 � s2 && ChðuÞ � ðs1

S
s2) do

6: s1  s1u ;
7: u argmaxu2P m0ðuÞwherem0ðuÞ is given in Eq. (3).
8: s2  us2;
9: P  P � fug;
10: for u: u 2 V � s1 � s2 && (9v 2 s2 : uv 2 E) do
11: P  P [ fug;
12: s s1s2;
13: for each uv 2 E do
14: if v is on the left of u in s then
15: C  C [ fuvg;
16: return C.

The input of the algorithm is a weighted directed graph G
which represents the network topology. The output of the
algorithm is the set of cutoff links C whose removal trans-
forms the graph into a DAG.

� Lines 1 � 3: The algorithm initializes 4 variables. C is
the set of cutoff links and it is initialized to empty. s1
and s2 are two ordered set of nodes: s1 stores the proc-
essed nodes in the sequence head while s2 stores the
processed nodes in the sequence tail. The algorithm
first puts the sinkNode into the sequence tail. Set P is
used to store the set of nodes having directed paths to
the sinkNode. The algorithm tries to add nodes from
P to the front of s2 in order to ensure that every node
has a directed path to sinkNode. P is initialized to be
the nodes having directed edges to the sinkNode.

� Lines 4 � 11: The algorithm tries to add all the nodes in
the network to s1 or s2. After the loop, the concatena-
tion of s1 and s2 forms a new node sequence, implying
the removed links (i.e., backedges from right to left).
– Lines 5 � 6: The algorithm selects all unprocessed

nodes whose child nodes are already in the
sequence head or tail. The algorithm then adds
those nodes at the tail of s1. According to Eq. (3), a
node’s position in the sequence can only affect its
child nodes. For any node uwhose child nodes are
already in s1 or s2, its position will not affect the
metric values of unprocessed nodes which cannot
be child nodes of u. Therefore, it’s better to put u
near the head of the sequence, so its own metric
value can bemaximized.

– Lines 7 � 11: The algorithm selects from P the
node which has the maximum metric value and
add it to the front of s2. Note that every node in
P has directed paths to sinkNode. The algorithm
also updates P by removing the added node and
adding the added node’s children nodes.

Lines 12 � 15: A new sequence s is formed by
concatenating s1 and s2. The cutoff edges are those
backedges defined by s.

We use the example shown in Fig. 3a to illustrate the work-
ing details of Algorithm 1. Initially, C ¼ f, s1 ¼ f, s2 ¼ ðSÞ,
andP ¼ fAg. Thenwe start thewhile loop.

� First iteration. There’s no node satisfying condition
specified in line 5. The algorithm addsA to the front of
s2 since A is the only node in P. P is updated to fBg
since B has outgoing edges to A. After this iteration,
s1 ¼ f, s2 ¼ ðA;SÞ.

� Second iteration. There’s no node satisfying condition
specified in line 5. The algorithm adds B to the front of
s2 since B is the only node in P. P is updated to fC;Dg.
After this iteration, s1 ¼ f, s2 ¼ ðB;A;SÞ.

� Third iteration. There’s no node satisfying condition
specified in line 5. Now there are two candidates, C
and D, to be processed. According to Eq. (3),m0ðCÞ ¼
0:8
0:888 and m0ðDÞ ¼ 0:5

0:95. Hence, the algorithm adds C to

the front of s2. P is updated to fDg. After this iteration,
s1 ¼ f, s2 ¼ ðC;B;A;SÞ.

� Fourth iteration. The algorithm adds E to the tail of s1
since its only child node C has already been in s2. The
algorithm continues to addD to the tail of s1 since D’s
child nodes, C and E, are already in s1 or s2. P is
updated to f. After this iteration, s1 ¼ ðE;DÞ and
s2 ¼ ðC;B;A;SÞ. The algorithm terminates because s1
and s2 include all nodes in the network.
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The final sequence is ðE;D;C;B;A; SÞ and C ¼ fAC;AB;
CD;CEg. The resultant graph is shown in Fig. 3d. The maxi-
mumdiversity reduction ratio isRfAC;AB;CD;CEgðCÞ ¼ 0:088

0:888.

In order to see the benefits of our algorithm, we also imple-
ment an enhanced Eades’ algorithm (EEA) which uses the
metric of mðuÞ ¼ dinðuÞ � doutðuÞ while ensuring directed
paths between every node to the sink. The resultant graph is
shown in Fig. 3c. The maximum diversity reduction ratio is
RfAB;AC;DCgðDÞ ¼ 0:45

0:95.We can see that our algorithm results in

significantly better performance than EEA.
It is important to point out that the solution of aCut ensures

that (1) each node remains connected to the sink node, (2) the final
network is loop free.

Proof. Loop-free property. The final network must be loop
free since our algorithm generates a sequence in which all
backedges are removed from the original graph.

Connectivity Property. In our algorithm, each node can be
added to the final sequence via two ways: (1) it is added to
s2, (2) it is added to s1.

First, if the node is added to s2, it must have a directed
path to the sink since it is selected from the set P (lines 7
and 8)which have directed paths to the sink by definition.

Second, if the node, say x, is added to s1, it must be
that the original graph G contains no backedges from x.
Assume there is a backedge x! xl in the original graph,
i.e., x! xl 2 E and xl is added to s1 before x. When add-
ing xl to s1, it must follows that ChðxlÞ 2 s1 [ s2 (line 5),
i.e., x must be already in s1 before xl, contradicting with
the assumption that there is a backedge x! xl in graph
G. Since the original graph is connected, i.e., each node
has a directed path to the sink and our algorithm does not
remove any outedges for any node x in s1 (i.e., these out-
edges do not appear as backedges in the final sequence), x
remains connected to the sink. tu
Time Complexity of aCut. The while loop processes all n

nodes (line 4). For each node, the argmax operation may
require OðnÞ time complexity at worst (line 7). The overall
time complexity is thus Oðn2Þ.

Algorithm 2. Generalized Cutoff Algorithm (gCut)

Input: Weighted directed graph GðV;EÞ, parameter a 2 ½0; 1	
Output: Set of cut edges Ca

1: Ca  aCutðGÞ
2: NumLinks ajCaj
3: while jCaj > NumLinks do
4: P  set of nodes whose outgoing links exist in Ca

5: u argmaxu2P RCaðuÞ
6: v argmaxuv2Ca

quv
7: Ca  Ca � fuvg;
8: return Ca

5.2 Algorithm for the Second Problem

Based on the algorithm developed in the previous section, we
would like to develop an algorithm for the general problem
formulated in Section 4. For this problem, there is an aggres-
sive parameter a, which is used to limit the number of cutoff
links. Our algorithm first finds out the set of cutoff links C1

whose removal transforms the network into a DAG. Then the
algorithm greedily removes links fromC1. Those links will be

reserved in the resultant graph. In each step, the algorithm
selects the link which can most effectively decrease the value
of our optimization function, i.e., the maximum diversity
reduction ratio.

Algorithm 2 shows the pseudocode of our algorithm.
The input of our algorithm is a weighted directed graph

G and an aggressive parameter in the range of [0, 1]. The
output of our algorithm is a set of cutoff links Ca. The num-
ber of cutoff links depends on the aggressiveness parame-
ter: when a ¼ 0, Ca ¼ f; when a ¼ 1, Ca ¼ C1.

� Lines 1 � 2: The algorithm initializes Ca to C1 which
is the output of Algorithm 1. NumLinks is used to
record the number of links which will remain in Ca.

� Lines 3 � 7: The algorithm keeps removing links
from Ca until the number of links in Ca equals to
NumLinks. The algorithm finds out all nodes whose
diversity decreases due to the removal of Ca, i.e.,
nodes whose outgoing edges exist in Ca. The results
are stored in the set P . From set P , the algorithm
finds out the node u whose diversity reduction ratio
is the maximum. Node u is the node with the maxi-
mum diversity reduction ratio in the network. Since
our goal is to minimize the maximum diversity
reduction ratio, we should reduce u’s diversity
reduction ratio to the largest extent. That means the
link uv having the best link quality in Ca should be
reserved in the resultant graph. In other words, the
link uv should be removed from Ca.

We use the example shown in Fig. 3d to illustrate the
working details of Algorithm 2. Suppose a ¼ 0:5. Initially,
C0:5 ¼ fAB;AC;CD;CEg, NumLinks = 2.

� First iteration. P ¼ fA;Cg. RC0:5
ðAÞ ¼ 0:096

0:996 and RC0:5
ðCÞ ¼

0:088
0:888 > RC0:5

ðAÞ. We delete CE which is the best out-

going edge of node C in C0:5.

� Second iteration.RC0:5
ðCÞ ¼ 0:008

0:888 < RC0:5
ðAÞ. We delete

edgeAB fromC0:5.
As the result, C0:5 ¼ fAC;CDg as opposed to C1 ¼ fAB;

AC;CD;CEg.
Time Complexity of gCut. Invocation to aCut causes a time

complexity ofOðn2Þ. The while loop process ð1� aÞjCaj links.
In processing each link, the worst time complexity is OðCaÞ.
Therefore, the time complexity of gCut isOðn2 þ jCaj2Þ. Given
the number of edges e andnodes n in the original network, the
maximum value of Ca would be e� ðn� 1Þ since at least
ðn� 1Þ edges should remain in the network to ensure connec-
tivity. The worst time complexity of gCut becomes Oðn2þ
ðe� nþ 1Þ2Þ � Oðe2Þ when e is much larger than n for dense
sensor networks.

5.3 Practical Issues and Message Overhead

Practical Issues. The centralized algorithm runs at the PC
backend. There are several practical issues.

How to collect the network topology with link weights
(to the sink node and then to the PC backend)? Each node
can maintain its neighborhood information. Such neighbor-
hood information (e.g., its candidate forwarders and the
corresponding long-term link qualities) can be transmitted
to the sink node via multihop communication, using a data
collection protocol (e.g., CTP [1]).
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How to inform each individual node to cut off the links?
The sink should find the path to an individual node to
inform it to cut off the links originated from this node. For
example, the network could employ the TeleAdjusting pro-
tocol [14] in which a packet used for remote control is for-
warded along a cost-optimal path.

How to deal with network dynamics, such as node addi-
tions and deletions? When a node is added to the network,
the node can report its neighborhood information to the
sink. When sink finds that the network topology (i.e., the
input) changes, it recomputes the cutoff links. The sink then
informs each individual node to take the new actions, e.g.,
remove new links or recover old removed links. When a
node is removed from the network, its neighbor can detect
this phenomenon and inform the sink node which can again
recompute the new result.

Message Overhead. Assume the network has n nodes. The
average degree of a node is d. The subtree routed at node i
has a size of T ðiÞ.

The centralized algorithm needs to collect network topol-
ogy information (including the link qualities) periodically.
The size of topology information of each node is proportional
to the degree, denoted as OðdÞ. Assume the period is tb. For
node i, it needs to receive and transmit topology information
from T ðiÞ nodes. Therefore, the collection overhead at node i
is T ðiÞ 
OðdÞ 
 T=tb for a total time period of T .

After running the algorithm at the sink node, it dissemi-
nates the control information to remove individual links.
Assume we need to remove m links which reside on the
subtree rooted at i. The control overhead is OðmÞ.

Hence, the total overhead at node i is T ðiÞ 
OðdÞ 
 T=tbþ
OðmÞ for a time period of T .

6 DISTRIBUTED ALGORITHM

As we have mentioned in the previous section, the central-
ized algorithm has relatively large communication over-
head since it runs on the PC backend and requires
collecting messages for building the whole network graph
as well as transferring messages for controlling the routing
behaviors of the individual node.

To address this limitation, we propose a distributed algo-
rithm with which each node decides to cut off its own out-
going links based on its local information after receiving a
network-wide aggressive parameter a.

The key strategy of the centralized algorithm is to sort the
nodes according to its metric value into a sequence. The cut-
off links are those backedges defined by the sequence, i.e.,
edges from right to left. In order to cut off links at an indi-
vidual node, the node only needs to know its relative posi-
tion to its candidate forwarders in the final sequence. To
determine such relative positions, we need to address the
following challenging problems.

When to compute the metric value? We let the node com-
pute its metric value when one of its forwarders has been
added to the tail of the final sequence. A node receives noti-
fications about its neighbors’ status (i.e., whether the neigh-
bor enters the sequence tail) via message exchanges. In this
way, a node can be added to the sequence tail only when at
least one of its forwarders exists in the sequence tail, ensur-
ing a directed path exists towards the sink.

How to compute the metric value locally? We let a
node maintain its neighborhood information, e.g., its
candidate forwarders, the link qualities to these forward-
ers. A node also receives its forwarder’s status informa-
tion, i.e., whether the forwarder has already entered the
sequence tail. All links to the forwarders in the sequence
tail are reserved in the resultant topology while links to
other forwarders are temporally unavailable in the resul-
tant topology. A node uses such information to compute
and update its metric value. The metric value converges
to the correct value only when the node possesses the
maximum metric value and enters the sequence tail in
the current step.

How to elect the node with the maximum metric value?
A node will periodically broadcast its metric value. Other
node receiving this metric value judges whether its metric
value is larger than the metric value overheard. If yes, the
node will remain in the contention phase, attempting to
overhear more metric values. If a sufficiently long time
period, say tc, has passed and the node does not hear any
message having a larger metric value, the node is elected
out and it is added to the sequence tail. Otherwise, the node
helps propagating the overheard larger metric value so that
more nodes can learn this fact. Since each node maintains
the largest metric value it has learnt, this value must be
invalidated once the corresponding node has been added to
the sequence tail. It is possible that two or more nodes elect
themselves out in the same step because they did not over-
hear other larger metric value. The distributed algorithm
works correctly in this case since only forward edges remain
in the network and there are no chances that there are rout-
ing loops between those nodes. However, there will be per-
formance degradations since links between those nodes
may be unnecessarily removed. In our implementation, we
can optimize the setting of broadcast timer so that the chan-
ces of control message losses are small.

Algorithm 3 shows the pseudocode of our algorithm. The
network-wide parameter a is disseminated into the net-
work. After receiving this parameter, each node runs this
algorithm locally and blacklists the requested number of
links (or forwarders).

Each node has 3 states: IDLE, PROCESSING, and FINISH.
IDLE is the initial state. When the node starts to compute its
metric value, it enters the PROCESSING state. Once the node
is added to the sequence tail, it enters the FINISH state.

There are 4 events to handle. (1) A control message is
received. (2) The broadcast timer is fired. The broadcast
timer is used to control the transmissions of the control mes-
sages. (3) The contend timer is fired. The contend timer is
used for node election. If a node does not hear a larger met-
ric value during the contend time period, it thinks it has the
largest metric value in the network. (4) The invalidate timer
is fired. The invalidate timer is used to invalidate the metric
value of the elected node so that the next node can be
elected and added to the sequence tail.

� Lines 11–34: The node handles the control message
reception event. Lines 13–17: the node computes its
metric value and enters the contention phase. Lines
18–20: the node invalidates its local information.
Lines 22–28: the node helps propagate the invalidate
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information. Lines 29–34: the node updates the over-
heard metric value. If it is larger than its own metric,
it stops the contention.

� Lines 35–47: The node handles the broadcast timer
fired event. Lines 36–38: The node broadcasts the
information when it finishes (i.e., enters the sequence
tail). Lines 39–42: The node broadcasts its own metric
value. Lines 43–47: The node helps propagate the
maximummetric value it overheard.

� Lines 48–56: The node handles the contention timer
fired event. The node enters the FINISH state and
cuts off the requested number of backedges pointing
from the current node to forwarders in the PROC-
ESSING state.

� Lines 57–62: The node handles the invalidate timer
fired event.

Algorithm 3. Distributed Cutoff Algorithm (dCut)

1: enum {IDLE, PROCESSING, FINISH};
2: Array finishBitmap[N];
3: broadcastTimer = Timer(PERIODIC, tb);
4: contendTimer = Timer(ONESHOT, tc);
5: invalidateTimer = Timer(ONESHOT, ti);
6: state IDLE; metric 0;
7: maxMetric 0, maxMetricOwner �1;
8: finishBitmap 0;
9: broadcastTimer.start();
10: invalidateTimer.start();

11: Receive msg
12: if msg.state == FINISH then
13: if msg.nodeID is in my candidate forwarder set then
14: Compute metric; state PROCESSING

15: if state 6¼ IDLE && metric � maxMetric then
16: contendTimer.start();
17: finishBitmap[msg.nodeId] 1;
18: if maxMetricOwner == msg.nodeID then
19: maxMetric 0;
20: maxMetricOwner �1;
21: else if msg.state == PROCESSING then
22: if finishBitmap[msg.nodeId] == 1 then
23: newMsg.state = FINISH;
24: newMsg.nodeID = msg.nodeID;
25: broadcast(newMsg);
26: else if msg.nodeId == maxMetricOwner then
27: maxMetric = msg.metric;
28: invalidateTimer.restart();
29: else if msg.metric > maxMetric then
30: maxMetric = msg.metric;
31: maxMetricOwner = msg.nodeID;
32: invalidateTimer.restart();
33: if contendTimer.isRunning() && maxMetric >

metric then
34: contendTimer.stop();
35: broadcastTimer fired:
36: if state == FINISH then
37: newMsg.state = FINISH;
38: newMsg.nodeID = MY_NODE_ID;
39: else if metric > maxMetric then
40: newMsg.state = PROCESSING;
41: newMsg.nodeID = MY_NODE_ID;
42: newMsg.metric = metric;
43: else

44: newMsg.state = PROCESSING;
45: newMsg.nodeID = maxMetricOwner;
46: newMsg.metric = maxMetric;
47: broadcast(newMsg);
48: contendTimer fired:
49: if state == PROCESSING then
50: state = FINISH;
51: finishBitmap[MY_NODE_ID] = 1;
52: newMsg.state = FINISH;
53: newMsg.nodeID = MY_NODE_ID;
54: broadcast(newMsg);
55: C  forwarders whose state is PROCESSING;
56: blacklist ajCj forwarders with the worst link qualities;
57: invalidateTimer fired:
58: if state == PROCESSING then
59: maxMetric = 0;
60: maxMetricOwner = -1;
61: if metric 6¼ 0 then
62: contendTimer.restart();

There are three parameters tb, tc, ti in the distributed algo-
rithm. tb is the time period for broadcasting control messages.
tc is the time period for electing the node with the maximum
metric value. If tc were large enough for getting notification
from any node in the network, the order of the final sequence
will be the same as the centralized algorithm.However, a large
tc value can cause a long execution time for cutting off the
links. In practice, we set tc multiple times of tb. ti is the time
period for invalidating the metric value of an already elected
node. In practice, we set ti several times of tb. Without explic-
itly specified, we set tb ¼ 1 min, tc ¼ 10 min, and ti ¼ 3 min
in the default implementation of the distributed algorithm.

Message Overhead of dCut. Each node transmits a small mes-
sage (newMsg) every tb and tc. Moreover, it needs to help
propagate information from other nodes. Assume the conten-
tion timer is set so that the message can propagate l hops far
away. The total overhead for transmitting and propagating
themetric value is T=tb þ T=tc þ dl for a time period of T .

After receiving the messages containing the metric value,
each node runs the algorithm locally to remove links. The
sink node only needs to disseminate a global a value to each
node. Therefore, the control overhead of a node isOð1Þ.

Hence, the total overhead for any node is T=tb þ T=tc þ
dl þOð1Þ for a time period of T .

Comparing the message overhead of the centralized algo-
rithm and the distributed algorithm, we have the following
observations: (1) The distributed algorithmhas a smaller con-
trol overhead. (2) The distributed algorithm has better load
balance than the centralized algorithm. For centralized algo-
rithms, nodes near the sink may have a large number of
nodes in its subtree and hence have high traffic for topology
collection.

7 EVALUATION

We implement FlexCut based on the TinyOS 2.1.2/TelosB
platform. There are two versions: centralized and distrib-
uted. We evaluate our algorithms in terms of four metrics:

� Maximum diversity reduction ratio (MDRR): it is the
optimization goal of our algorithm and is used to eval-
uate the theoretical performance of various algorithms.
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� Packet delivery ratio (PDR): it is the successful packet
reception ratio from a given node to the sink node. It is
one of themost important networkmetrics.

� Packet transmission delay: it is the total transmission
delay from a given node to the sink node. It is one of
the most important network metrics, especially for
real-time applications.

� Radio duty cycle ratio: it is the percentage of radio on
time for a given sensor node. Radio duty cycle ratio
represents the energy consumption on a sensor node
since typical sensor networks employ low duty-
cycling to save energy and radio communication
consumes the most energy on a sensor node.

In Section 7.1, we conduct experiment in one indoor
testbed consisting of 80 TelosB nodes. In Section 7.2, we per-
form a trace-driven study on GreenOrbs—a real sensor net-
work deployment consisting of over 400 sensor nodes. In
Section 7.3, we conduct comparative study in different net-
work configurations. In Section 7.4, we experimentally
study the impact of a on the performance of our algorithms.
All the above experiments evaluate FlexCut with the CTP
protocol. Section 7.5 performs an initial exploration of the
RPL protocol.

7.1 Testbed Experiment

We use an indoor experiment consisting of 80 TelosB nodes
(see Fig. 4) for the experiment.

The inter-node spacing is 0.6 m and the power level of
the radios is configured to 1 in order to simulate multihop
behaviors. We use the CTP protocol for data collection: each
node generates data packets every 30 seconds.

Fig. 5 shows the transmission overhead of the centralized
algorithm and the distributed algorithm (with a ¼ 1). We
can see that the transmission overhead of the centralized

algorithm is much larger than the distributed algorithm due
to extra overhead in the topology collection process and the
remote control process. In the distributed algorithm, we
also observe that (1) the control traffic load is distributed
evenly in the network (unlike centralized algorithms with
which the nodes near the sink frequently participate in for-
warding the control packets). (2) the network nodes can con-
currently cut off links at different locations, resulting in
smaller response time for network control.

For the testbed experiment setting, it is difficult to
show the improvement of our algorithm due to relatively
small network scale and low routing dynamics. We artifi-
cially inject loops into the network by periodically
increasing the path-ETX value of 20 nodes near the sink,
increasing the looping probability of packets from the
child nodes of those nodes. Fig. 6 shows the CDF of the
transmission delay in the testbed experiment for the CTP
protocol and aCut (a ¼ 1). We can see that aCut results in
much lower transmission delays. Note that both CTP and
aCut achieves a high packet delivery ratio due to the high
retransmission threshold configured in the default CTP
(i.e., 30).

7.2 Trace-Driven Study

We also perform trace-driven study on a real-world sensor
network system—GreenOrbs. The GreenOrbs topology is
extracted from the “parent” field of the data packets from
each node. Each node also sends a special kind of packets,
containing neighborhood information from each node (e.g.,
neighbor node ID, link ETX estimate to each neighbor, etc.).
Please refer to [3] for the detailed descriptions about the col-
lected packet trace. Fig. 7 shows the topology of GreenOrbs,
with the solid line representing the routing links with qual-
ity better than a threshold (the quality is calculated from
link ETX). After applying our centralized algorithm with
a ¼ 1 to the network topology, we can obtain a set of cutoff

Fig. 5. Transmission overheads of centralized and distributed algorithms.

Fig. 4. Indoor testbed consisting of 80 TelosB nodes. Fig. 6. CDF of transmission delay in the testbed experiment.

Fig. 7. Topology of GreenOrbs. The cutoff links are shown in red.
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links, which are shown as red lines in Fig. 7. We can see that
our algorithms “reshape” the network topology so that the
possibilities of routing loops can be limited.

Fig. 8 shows the CDF of the diversity reduction ratio for
all network nodes. For aCut, all nodes have diversity reduc-
tion ratios less than 0.4, implying that no node sacrifices too
much diversity. For dCut (a ¼ 1), when tc ¼ 15 min, the
performance is the same as aCut. We also consider the
Enhanced Eades’ Algorithm described in Section 5.1. The
EEA algorithm tries to remove the minimum number of
edges from the topology, resulting in the largest number of
nodes with zero diversity reduction. However, it is possible
that a very good link is removed by EEA since it does not
consider link qualities. Therefore, we can find that the maxi-
mum diversity reduction ratio can reach as much as 0.9 for
EEA.

7.3 Comparative Study

Weperform comparative study on the following algorithms.

� Enhanced Eades’ Algorithm. EEA ensures that every
node has a directed path towards the sink. Note that
EEA does not consider link weights.

� aCut. Our centralized algorithm with a ¼ 1
(Algorithm 1).

� gCut. Our centralized algorithm with 0 � a � 1
(Algorithm 2).

� dCut. Our distributed algorithm.
� Bloom-filter-based forwarding (BFF). BFF is a simple

approach to attach each packet a bloom filter for
recording the already traversed nodes. At each for-
warder node, the routing decision should try to avoid
selecting the next-hop nodes in the bloom filter. If the
Bloom filter contains all the possible forwarders, the
node randomly selects a forwarder. The Bloom filter is
set to 64 bits.

We evaluate different algorithms in different topologies:

� 36-node. We generate this topology by the topology
generation tool in the TinyOS distribution. We deploy
36 nodes in a 20m� 20m area, which is divided into 36
squares. Each node is randomly deployed in one
square. We obtain the link weight by mapping the
SNR to its corresponding packet reception ratio.

� 196-node. We also generate this topology by the topol-
ogy generation tool in the TinyOS distribution. We
deploy 196 nodes in a 35m� 35marea,which is divided
into 196 squares. Each node is randomly deployed in
one square.

� 400-node. We generate this topology by the topology
generation tool in the TinyOS distribution. We deploy
400 nodes in a 40m � 40m area, which is divided into
400 squares. Each node is randomly deployed in one
square.

� GreenOrbs. We extract the topology from a real sen-
sor network deployment with over 400 sensor nodes.

Comparison in Terms of MDRR. Fig. 9 shows the perfor-
mance of different algorithms (with a ¼ 1) in terms of the
maximum diversity reduction ratio in four different net-
work topologies. For the 36 node topology, we also show
the optimal results which are obtained by enumerating all
possibilities. And for the other larger topologies, the calcula-
tion overhead of enumerating algorithm is unacceptable.
From Fig. 9a, we can see that the performance of our central-
ized algorithm is very similar to the optimal result. In all the
network topologies, our centralized algorithm achieves the
best performance. For the distributed algorithm, the param-
eter tc has a great impact. For a small value of tc ¼ 5 min
(dCut(5)), it is possible that a node mistakenly believes it
has the maximum metric value and is elected. Therefore,
there is a large performance gap from the centralized algo-
rithm. For a relatively large value of tc ¼ 15 min (dCut(15)),
the performance of the distributed algorithm is close to that
of the centralized algorithm.

Comparison in Terms of PDR and Delay. Fig. 10 shows the
comparison results in terms of packet delivery ratio. We
compare our distributed algorithm with EEA and BFF. We
can see that (1) the EEA algorithm always results in a low
PDR. This is because EEA does not consider link qualities.
(2) BFF’s PDR decreases in larger networks. It is possible
that BFF may not be able to find a loop-free path towards
the sink. For the example shown in Fig. 3a, packets from D
will follow the path DCBAS under the normal condition.
However, when the link CB severely degrades (e.g., discon-
nected), D may not instantly recognize this fact. D continues

97%

Fig. 8. CDF of diversity reduction ratio in GreenOrbs.

Fig. 9. Performance in terms of our optimization goal.
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to forward packets to C while C forwards the packet to E
since C recognizes that the link CB is already disconnected.
At forwarder E, the only feasible next-hop node is D. How-
ever, the selection of D will inevitably cause a routing loop
of DCED. (3) PDRs of FlexCut with different parameters are
different. We will carefully study the impact of the a param-
eter in Section 7.4.

Fig. 11 shows the comparison results in terms of trans-
mission delay. We observe (1) BFF results in a high trans-
mission delay, especially in large networks. This is partly
because the randomly chosen forwarders result in poor per-
formance when Bloom filter is limited in size and already
contains all possible forwarders. (2) Delays of FlexCut with
different parameters are different. In particular, delays of
EEA and FlexCut with a ¼ 1 increase in large networks
(e.g., 400-node network).

7.4 Impact of a

We examine the impact of the a parameter on three primary
sensor network metrics, packet delivery ratio, transmission

delay, and radio duty cycle. We perform simulation studies
for 400-node network running the CTP protocol. We com-
bine our distributed algorithm with CTP protocol. Each
node generates a data packet every 5 min. In CTP, there is a
threshold for switching parents for a given node. A node
only switches to a new parent if the difference of the current
parent’s ETX and the new parent’s ETX is larger than the
threshold. Therefore, with a small threshold, we will see
more parent changes and the network is more dynamic. We
vary this threshold to generate network settings with differ-
ent network dynamics.

Figs. 12 and 13 show the network performance of our
algorithms with different a values in low dynamic net-
work and high dynamic network. We find that our
algorithm is effective in improving the network perfor-
mance of a sensor network: our algorithm with the most
appropriate a value improves the PDR performance by
20% � 35% in average, reduces the transmission delay by
30% � 50% in average, and reduces the radio duty cycle
by 25 percent in average.

Fig. 10. Comparison results in terms of PDR.

Fig. 12. Network performance of dCut for the 400-node topology with low dynamics (ETX threshold = 2).

Fig. 11. Comparison results in terms of delay.

Fig. 13. Network performance of dCut for the 400-node topology with high dynamics (ETX threshold = 1).
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To help a network operator to configure a for realWSN,we
conduct further experiments by adjusting a and the ETX
threshold in amore fine-grainedmanner. Specifically, the ETX
threshold varies from 0 to 2 with a step of 0.5, and the a value
varies from 0 to 1 with a step of 0.1. Each experiment lasts for
two hours. Fig. 14 shows how the average number of parent
change per packet varies with different settings of the thresh-
old. We see that different settings of the threshold indeed
impact the number of parent change which can be measured
and observed by the network operator. Fig. 15 shows the opti-
mal a value in terms of the PDR and delay performance in dif-
ferent settings. We observe that (1) a high a value achieves a
better performance in terms of PDR and delay in the low
dynamic networks. This is because in low dynamic networks,
removing many poor links is safe as the possibilities for these
poor links to become good links is low. dCut with a high a

value will result in fewer loops, limiting the negative impact
of routing loops. (2) A low a value achieves better perfor-
mance in high dynamic network. This is because in high
dynamic networks, it is possible that poor links become good
links. Therefore, removing too many poor links may not be
beneficial. dCut with a low a value will preserve large routing
diversitieswhich are required for high dynamic networks.

Since the network dynamics can be quantified with the
number of parent change which can be measured and
observed by the network operator. The network operator
can use the number of parent change to select the optimal
value of a according to Table 1 which shows how the opti-
mal a value relates to the number of parent change accord-
ing to our experiment results.

7.5 FlexCut with RPL

RPL, the IPv6 Routing Protocol for Low-Power and Lossy
Networks [9], was standardized by the IETF in 2011 to
establish a common ground for the rapidly growing market
of Internet of Things (IoT) featured with low-power and
lossy networks (LLNs). Many ideas of the RPL was origi-
nally developed as part of the TinyOS collaboration and its
default routing protocol, CTP [1]. In RPL, Objective Func-
tion (OF) determines the mechanism in which a parent is

selected. Currently two different types of OFs are specified:
(1) Objective Function Zero (OF0) which is simply a hop
count-based metric, (2) Minimum Rank Objective (MRHOF)
which selects the path with the smallest metric value (e.g.,
path ETX).

Most RPL implementations (e.g., TinyRPL [15] and Con-
tikiRPL [16]) use MRHOF by default due to better energy
efficiency. Since the MRHOF uses the same routing metric
as CTP, we expect that FlexCut can also be applied to RPL
with the similar results.

To confirm this, we conduct simulation studies to see the
keymetrics of CTP andRPL. ForCTP,we use the TOSSIMsim-
ulator. For RPL, we use ContikiRPL with the Cooja simulator.
In both simulations, we use a 400-node network topology. We
deploy 400 nodes in a 40m � 40m area, which is divided into
400 squares. Each node is randomly deployed in one square.
Each node generates a packet every 2 min or 5 min. Each
experiment lasts for two simulation hours and is repeated for
10 times. Table 2 shows the average PDR, parent change (per
packet), and themeasured loop count of the two protocols.

Results show that RPL and CTP have similar performance.
In particular, RPL nodes experienced slightly higher churn
compared to CTP. For example, with 2 min interval, CTP
experienced an average number of 0.121 parent changes per
packet while RPL experienced a slightly higher 0.133 parent
changes. Similar results were also observed by other research-
ers [15]. By making more frequent parent changes, the net-
work was less stable and FlexCut is thus beneficial to achieve
a better performance.

8 RELATED WORK

Our work introduces flexible control over distributed rout-
ing in sensor networks. We first introduce representative
routing protocol and then the control mechanisms over
these protocols.

8.1 Routing Protocols

Most sensor networks employ distributed and dynamic
routing protocols [1], [9], [17]. CTP [1] is the default routing

Fig. 14. Average parent change/packet under different ETX threshold.

Fig. 15. Optimal a in terms of PDR (left) and delay (right).

TABLE 1
Optimal a in Terms of PDR (Left) and Delay (Right)

TABLE 2
Network Performance Comparison Averaged over 400 Nodes

between RPL and CTP

Contiki-RPL CTP

Packet Interval 2 min 5 min 2 min 5 min

PDR 0.99 0.98 0.99 0.99
Parent Change 0.133 0.142 0.121 0.135
Loop Count 15.3 0.54 18.4 0.318
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protocol in TinyOS. It is a distance vector routing protocol
with the routing metric being ETX [2] which is the expected
number of transmissions over a path. In their experiments,
the authors of CTP also noticed that link dynamics and tran-
sient loops are two dominant factors for the poor data collec-
tion performance. The more recent RPL [9] protocol is a
routing protocol specifically designed for Low power and
Lossy Networks (LLN) compliant with the 6LoWPAN pro-
tocol. In RPL, loop could occur when a node loses its
parents and selects the node in its own sub-DODAG (Desti-
nation Oriented DAG) as the new parent. This might hap-
pen particularly when DIO (DODAG Information Object)
messages are lost. Both CTP and RPL employ data path vali-
dation and topology repair mechanisms when loops occur
while our approach tries to limit the formation of loops in
the first place.

There are routing protocols for sensor networks, e.g.,
opportunistic routing [18], [19], [20], and backpressure rout-
ing [21]. In opportunistic routing, any node in the forwarder
set can help forward the packet when it opportunistically
receives the packet. It is possible that temporary loops can
occur. FlexCut can naturally be applied in opportunistic
routing protocols so that the forwarder set can be optimized
to avoid potential loops. In backpressure routing, routing
decisions are made to (roughly) minimize the sum of
squares of queue backlogs in the network from one timeslot
to the next. Backpressure routing is theoretically proved
throughput optimal and there are significant works on
adapting it to different scenarios. However, backpressure
routing may have poor delay performance when packets
traverse loops in the network. Our work is helpful for both
opportunistic routing and backpressure routing.

There are loop-free routing protocols. AODV [10] uses des-
tination-generated sequence numbers to synchronize routing
topology changes and prevent loops. The tradeoff is that
when a link goes down, the entire subtree whose root used
that link is disconnected until an alternate path is found. Loop
free backpressure (LFBP) [11] is a protocol that forwards pack-
ets along directed acyclic graphs (DAGs) to avoid the looping
problem. Our algorithm can also be used for constructing the
neededDAG.Different loop-free routing protocols essentially
trade different levels of diversity for forwarding the packets.
For a particular loop-free routing protocol, a fixed tradeoff is
usually made. Our current work provides an abstraction
which can trade arbitrary diversity for better network perfor-
mance. For example, FlexCut can provide the needed routing
structure for backpressure. Such a routing structure may not
be necessarily loop-free so that the routing algorithm can
exploit more candidate forwarders to achieve better network
performance. Moreover, our current work resides in the 2.5
layer and could benefitmany other Layer 3 routing protocols.

Bloomfilters can be employed to prevent loops. In [12], [13],
an extra Bloom filter field is added into the data packets to
record the routing path so that nodes already traversed would
not be selected again. A key difference between FlexCut and
bloom-filter-based forwarding is when to avoid the loops.
FlexCut, in its most aggressive form, avoids loops before the
routing actions taking place. Bloom-filter-based forwarding,
on the contrary, avoids loops during the routing process. It is
possible that bloom-filter-based forwardingmay not be able to
find a loop-free path towards the sink.

8.2 Control over Routing

There are many research efforts to enforce control over rout-
ing protocols. SDN is an approach to computer networking
that allows network administrators to manage network
services through abstraction of lower-level functionality.
With SDN, administrators can easily control the forwarding
behaviors of the network [5], [22]. SDN has also been
applied in sensor networks [23], [24], [25].

Luo et al. propose Sensor OpenFlow [23], a software-
defined routing architecture for sensor networks. This archi-
tecture is similar to the SDN architecture for the Internet. The
routing action defines the specific routing action for the
matched packets, e.g., forward to a specific port or drop the
packets. A centralized controller uses a customized version of
OpenFlow to interact with the sensor nodes. While Sensor
OpenFlow borrows ideas from OpenFlow, it addresses WSN-
specific challenges such as how to create flows, how to reduce
control traffic, and how to incorporate in-network processing.
SDN-WISE [24] is another recent work that presents a SDN
solution forwireless sensor networks. Different from the exist-
ing SDN solutions for wireless sensor networks, SDN-WISE is
stateful and makes sensor nodes programmable as finite state
machines, thus enabling them to run operations that cannot be
supported by stateless solutions. Although these approaches
implement mechanisms for flexibly controlling each node’s
forwarding behavior, they do not provide high-level abstrac-
tions for achieving network-level requirements, e.g., loop-
free.Moreover, these approaches require individually control-
ling each node’s forwarding behavior, introducing large con-
trol overhead.

TeleAdjusting [14] is a ready-to-use protocol to remotely
control any individual node in a WSN. Our work can employ
the TeleAdjusting protocol for notifying each node the black-
listed forwarders. pTunes [26] is a framework for runtime
adaptation of low-power MAC protocol parameters. pTunes
improves the performance of WSN by automatically deter-
mining optimized parameters based on application require-
ments. Different from pTunes, our current work focuses on
reshaping the network topology rather than MAC-layer
parameters. As described in [27], the network topology can
have significant impacts on the overall network performance.
In our future work, we would like to consider other factors
impacting the network performance.

9 CONCLUSION

In this paper, we introduce FlexCut, a flexible approach for
cutting off wireless links, which essentially limits the candi-
date forwarder set of each node. Unlike existing SDN solu-
tions, FlexCut introduces flexible control over existing
distributed and dynamic routing protocols. FlexCut can trade
arbitrary amounts of routing dynamics for better network
performance by exposing to network operators a parameter
which quantifying the aggressiveness.Wemodel the network
as a directed graph with link weights. Each node in the graph
points to its candidate forwarder set. The goal of FlexCut is to
cut off user-defined number of links so that loops can be allevi-
ated while routing flexibility can be preserved to the largest
extent. We propose novel algorithms, both centralized and
distributed, for addressing these problems.

There are multiple future research directions. First, we
would like to automate the selection of the a value for dif-
ferent network topologies. Second, we would like to apply
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FlexCut to more Layer 3 network protocols to evaluate to
what extent FlexCut can benefit these protocols.
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