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1 INTRODUCTION
The recent years have witnessed the rapid growth of IoT (Internet
of Things) technologies and applications. Low-power wireless ra-
dio technologies form the basis of many IoT applications. These
low-power wireless radio technologies have drastically different
PHY layer designs and different protocol stacks. The communica-
tion among IoT nodes does not fully interoperate to date [8]. For
example, IoT nodes without IP support (due to strict resource con-
straints) cannot use application layer IoT protocols, e.g., MQTT, to
communicate with each other. The underlying reason is the lack of
a lightweight and holistic network architecture for heterogeneous
IoT nodes having different radio technologies [3, 4, 7].

In this poster, we present TinyNet, a lightweight, modular, and
unified network architecture for different low-power radio tech-
nologies. TinyNet has the following desirable goals:

Lightweight: The implementation should be lightweight, allow-
ing the installation on low-end IoT nodes. Modular: The design
should be modular so that new protocols can be easily composed for
specific scenarios. Unified: TinyNet should be able to unify many
different radio technologies at the network layer so that heteroge-
neous IoT nodes can seamlessly communicate with each other at or
above the network layer. Holistic: TinyNet should have a holistic
network stack from the PHY layer to the application layer so that
high layer protocols, e.g., UDP, and MQTT, can be used. Efficient:
TinyNet should have a high runtime efficiency, and achieves low
communication delay.
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TinyNet consists of many reusable modules in different layers
(Section 2.1). TinyNet needs to address several technical challenges
in unifying different radio technologies. For example, how to pro-
vide neighbor discovery service for both single channel based radios
and channel hopping based radios? How to enable multi-hop sup-
port for single-hop communication technologies such as BLE and
LoRa? The neighbor management module and the packet relay
module in TinyNet have addressed the above challenges, respec-
tively. The modular architecture of TinyNet allows us to easily
re-implement existing protocols, e.g., SP [10] as well as simplifying
the creation of new ones by selecting specific modules in TinyNet
(Section 2.2). We present one new protocol for example: RPL over
LoRaWAN provides multi-hop wireless routing over LoRaWAN.

2 TINYNET ARCHITECTURE
Figure 1 shows the network architecture of TinyNet where the
boxes indicate different modules and arrows show the interactions
between modules. The current implementation of TinyNet unifies
three radio technologies, including 802.15.4, BLE, and LoRa. On
top of PHY layers, there are dedicated MAC protocols, e.g., BLE
MAC [5], LoRaWAN [1] and LPL (Low Power Listening) MAC [2].
It is worth noting that TinyNet also allows LoRa to reuse the MAC
protocols originally designed for 802.15.4 PHY, i.e., RDC (Radio
Duty Cycle Control) and LPL MAC. An important part of TinyNet
is located at L2.5, i.e., an abstraction layer between the link and net-
work layer. This layer allows TinyNet to run over a broad range of
radio technologies as well as provide support for IPv6 which forms
the basis for interoperability at the network layer and above. At
the transport layer, TinyNet supports TCP, UDP, and reliable UDP
transmission. At the application layer, TinyNet supports protocols
built upon TCP/UDP, including COAP and MQTT [11].

2.1 Main module description
Neighbor management. This modules provide two functional-
ities including neighbor discovery and link quality estimation.
TinyNet provides a unified neighbor table: neighbor address, radio-
on time, radio-off time, link quality, channels. The channel entry
is used for channel hopping based protocols for recoding the syn-
chronized transmission channels. Considering different underlying
mechanisms, TinyNet has two neighbor discovery implementation-
s: LPL based neighbor discovery (e.g., for 802.15.4 and LoRa) and
channel hopping based neighbor discovery (e.g., for BLE and Lo-
RaWAN). TinyNet provides two implementations for link quality
estimation: RTT (round trip time) based and PRR (packet reception
ratio) based.

Packet relay.Thismodule is important to enablemulti-hop com-
munications for all three radios. Like neighbor discovery, TinyNet
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Table 1: Decomposition of existing and composition of new network protocols.
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Figure 1: TinyNet architecture overview. The white boxes in-
dicate existingmodules while the gray boxes indicate newly
implemented modules in TinyNet.
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Figure 2: Four types of IoT nodes for the evaluation.

has two implementations for packet relay: LPL based packet relay
(e.g., for 802.15.4 and LoRa) and channel hopping based packet
relay (e.g., for BLE and LoRaWAN). The latter approach carefully
allocates the reception/transmission slots for receiving/forwarding
packets.

Packet queue. The packet queue module performs the buffer
management and the packet scheduling. TinyNet provides three
packet scheduling mechanisms: FIFO [9], priority based and multi-
radio packet scheduling.

2.2 Protocol composition
The modular architecture of TinyNet allows us to easily reimple-
ment existing and new protocols (Table 1).

SP. SP [10] is L2.5 layer protocol designed for 802.15.4 based
sensor networks. SP allows link layers and network protocols to
cooperate by maintaining and exposing a shared neighbor table and

Figure 3: Multi-hop delay performance between heteroge-
neous IoT nodes through a gateway for different protocols.

message pool. Priority based packet scheduling is utilized so that
urgent packets, e.g., control packets, can get higher priority in SP.
It is also worth mentioning that SP does not maintain synchronized
channel information and thus the channel entry of neighbor table
can be discarded.

RPL over LoRaWAN. RPL-over-LoRaWAN is a new protocol
that uses RPL for multi-hop routing. RPL is a multi-hop wireless
routing protocol based on 6LoWPAN [6] which compresses IPv6
headers to meet the resource constraints of IoT nodes. We can use
PRR based link estimation since the underlying MAC protocols in
LoRaWAN provides packet reception status. For neighbor discovery,
we use channel hopping based neighbor discovery since LoRaWAN
is channel hopping based. The packet relay module is required to
allocate the time slots for packet transmission and reception.

3 EVALUATION AND FUTUREWORKS
TinyNet is implemented on Raspberry Pi 3 running Linux kernel
version 4.14 and unifies three radio technologies, including 802.15.4,
BLE, and LoRa (as shown in Figure 2). For the full implementation
for three radios, TinyNet consumes 9.138∼10.242 KB in RAM and
71.272∼ 83.053 KB in ROM, indicating that it is lightweight for
many existing IoT nodes. In Figure 3 shows the delay performance
of different nodes through a gateway at different layers, i.e., the
transport layer and the application layer. ZGBB means a 802.15.4
node communicates with a BLE node two hops away through a
gateway. We can see that TinyNet allows interoperability among
heterogeneous nodes at the network layer and above (e.g., MQTT
and TinyNet-UDP), even if they are several hops away. TinyNet
automatically handles all communication details such as multi-hop
forwarding, neighbor management, etc. There are multiple future
research directions. First, we would like to incorporate more radio
technologies in TinyNet. Second, we would like to expose more
tunable parameters for performance optimizations.
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