
SecTEE: A Software-based Approach to Secure Enclave
Architecture Using TEE

Shijun Zhao
Institute of Software Chinese

Academy of Sciences
Beijing, China

Qianying Zhang∗
College of Information Engineering,

Capital Normal University
Beijing, China

Yu Qin
Institute of Software Chinese

Academy of Sciences
Beijing, China

Wei Feng
Institute of Software Chinese

Academy of Sciences
Beijing, China

Dengguo Feng
Institute of Software Chinese

Academy of Sciences
Beijing, China

ABSTRACT
Secure enclaves provide a practical solution to secure computation,
and current approaches to secure enclaves are implemented by
extending hardware security mechanisms to the CPU architecture.
Therefore, it is hard for a platform to offer secure computation if its
CPU architecture is not equipped with any secure enclave features.
Unfortunately, ARM CPUs, dominating mobile devices and having
increasingmomentum in cloudmarkets, do not provide any security
mechanisms achieving the security equivalent to modern secure
enclave architectures. In this paper, we propose SecTEE, a software-
based secure enclave architecture which is based on the CPU’s
isolation mechanism and does not require specialized security
hardware of the CPU architecture such as memory encryption
engines. SecTEE achieves a high level of security even compared
with hardware-based secure enclave architectures: resistance to
privileged host software attacks, lightweight physical attacks,
and memory access based side-channel attacks. Besides, SecTEE
provides rich trusted computing primitives for enclaves: integrity
measurement, remote attestation, data sealing, secrets provisioning,
and life cycle management. We implement a SecTEE prototype
based on the ARM TrustZone technology, but our approach can
be applied to other CPU architectures with isolation mechanisms.
The evaluation results show that most overhead comes from the
software encryption and the runtime overhead imposed by trusted
computing primitives is acceptable.

KEYWORDS
Secure enclave, TEE, ARM TrustZone, Board-level physical attacks,
Memory access based side-channel attacks

∗Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CCS ’19, November 11–15, 2019, London, United Kingdom
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6747-9/19/11. . . $15.00
https://doi.org/10.1145/3319535.3363205

ACM Reference Format:
Shijun Zhao, Qianying Zhang, Yu Qin, Wei Feng, and Dengguo Feng. 2019.
SecTEE: A Software-based Approach to Secure Enclave Architecture Using
TEE. In 2019 ACM SIGSAC Conference on Computer and Communications
Security (CCS’19), November 11–15, 2019, London, United Kingdom. ACM,
New York, NY, USA, 18 pages. https://doi.org/10.1145/3319535.3363205

1 INTRODUCTION
Board-level physical attacks are becoming practical threats to
computer systems, such as cold boot attacks [42], bus monitoring
attacks [44, 46, 59, 78] and DMA attacks [19, 105]. These attacks
only require inexpensive attack tools, most of which are publicly
available [25, 76, 78, 97], resulting in that hackers can easily
reproduce these attacks. As a result, these attacks present a big
challenge to the security of computer systems, which are usually
equipped with security measures only against software attacks. To
tackle this challenge, academic and industrial communities propose
the secure enclave architecture, which supports secure computation
under physical attacks and privileged software attacks.

Secure enclaves are implemented as secure isolated execution
environments. Usually, their security is guaranteed by hardware
security mechanisms of CPUs. A specialized memory encryption
engine on the CPU encrypts DRAM regions belonging to secure
enclaves, and thus no code/data is stored outside CPU in plaintext
form. This mechanism prevents physical attacks against hardware
components outside CPU die, such as DRAM and buses. Besides, the
isolation mechanism of CPU isolates address spaces of secure en-
claves to prevent software attacks from the host OS and applications.
This paper mainly considers the security and functionality of secure
enclave architectures, so we refer to “secure enclave architecture”
meaning all the technologies that help to achieve the above security
level, no matter whether the isolated execution environment is
within the address space of its host application or not.

Since secure enclaves provide a high level of security, most
CPU giants deploy this feature to their products. Apple extends
a secure enclave coprocessor within its SoC. Intel proposes the
Software Guard Extensions (SGX) technology and deploys it to
all Core Processors (6th-generation and later). SGX is the most
widely used secure enclave technology, and a variety of SGX-based
security solutions [3, 4, 10, 18, 23, 54, 58, 90, 93, 95, 106, 111] have
been proposed. AMD implements its secure enclave architecture by

Session 8B: TEE I CCS ’19, November 11–15, 2019, London, United Kingdom

1723

https://doi.org/10.1145/3319535.3363205
https://doi.org/10.1145/3319535.3363205

incorporating a coprocessor called AMD Secure Processor (AMD-
SP) into the processor. The weakness of AMD’s secure enclave
architecture is that it does not provide integrity for enclaves’ DRAM
regions. IBM proposes the SecureBlue [87] and SecureBlue++ [6]
technologies that can be built into its processors to protect devices
from physical attacks.

ARM CPUs, which dominate mobile devices and gain increasing
momentum in cloud platforms, however, do not support secure
enclaves. Unfortunately, mobile devices could be lost easily and
cloud platforms could be tampered with by cloud server providers,
so ARM platforms have a strong requirement for a secure enclave
architecture. Current approaches to secure enclaves require modify-
ing the CPU and cannot be applied to commodity ARM platforms.

There are two issues to address when building a secure enclave
architecture for ARM platforms. The first one is the security
problem. ARM proposes TrustZone [2] as the security pillar
of its CPU architecture, which separates a secure world called
trusted execution environment (TEE) for security-critical code, but
TrustZone is designed to only resist software attacks and is unable
to resist physical attacks. Besides, software side-channel attacks
are also becoming practical threats to secure enclaves, especially
the page fault based side-channel attacks and the cache based side-
channel attacks [9, 14, 24, 32, 41, 73, 110, 114], which we refer to in
this paper as the “memory access based side-channel attacks". This
paper focuses on the memory access based side-channel attacks
because of two reasons. First, these attacks are the most threatening
ones against ARM platforms [68, 98, 99, 112], which even have been
developed against ARM TrustZone [68, 122]. Although there are
other kinds of software side-channel attacks, such as side channels
based on speculative execution (Foreshadow [107], SgxPectre [13],
et al.), based on page directory [115], based on branch prediction
(BranchScope [21], Branch Shadowing [61], et al.), based on TLB
[33], these attacks usually target Intel CPUs, and it is better to
protect against them in hardware. Second, Ge et al. [27] have found
that side channels are caused by the inherent insecurity of the
hardware, and that OS itself is powerless to close all side channels
and it can prevent side-channel attacks only when the hardware
provides it with sufficient protectionmechanisms. For existing ARM
platforms, it is difficult to prevent all kinds of side-channel attacks
under current hardware protection mechanisms. Therefore, we only
consider resisting memory access based side-channel attacks in this
paper, and our resistance to these side-channel attacks can be seen
as an instance of preventing side-channel attacks by leveraging
CPU’s partition mechanism for memory management and caches.

The second issue is that ARM platforms lack necessary trusted
computing features required by secure enclaves. For example, an
enclave should be able to attest itself to a remote user that it is
issued by a legal entity, runs on a genuine platform, and its state is
trustworthy enough to be provisioned with secrets.

In this paper, we design a software-based secure enclave ar-
chitecture for ARM platforms, named SecTEE. We achieve our
goal by leveraging software-based security primitives of resisting
physical attacks and side-channel attacks, and do not require
modifications to the CPU hardware and only require some basic
security hardware resources which are common on commodity
CPUs. In contrast to specious arguments that software-based
approaches are unable to offer the same security guarantees as

hardware-based approaches [70], SecTEE illustrates a software-
based approach to a secure enclave architecture providing strong
security execution environments: 1) based on the SoC-bound
execution environment technology and TEE’s isolation capability,
SecTEE offers the same security properties as Intel SGX, namely
resistance to privileged host software attacks and lightweight
physical attacks; 2) based on the page coloring technique [55, 84]
and CPU’s hardware support on cache maintenance, SecTEE
protects ARM TrustZone from memory access based side-channel
attacks, including cross-core cache attacks.

Although there are some solutions that leverage the page
coloring technique to resist cache based side-channel attacks
[31, 55, 92], their approaches cannot be used directly in the ARM
TrustZone context. In their contexts, there exists a privileged system
(the hypervisor, for instance) controlling and managing the whole
physical memory, so they can divide the physical memory into
pieces that are guaranteed to not contend in the cache. However,
in the context of ARM TrustZone, the host OS in the normal
world and the TEE OS in the secure world manage the normal
memory and the secure memory respectively, and the normal world
and the secure world share caches, therefore, the host OS, which
can be compromised in the ARM TrustZone’s threat model, can
always perform cache based side-channel attacks by manipulating
a piece of normal memory sharing the same cache with the victim’s
memory in the secure world. Especially, when the attacker and the
victim run on separate CPU cores, the attacker can monitor the
cache lines of the victim while the victim is running, so cleaning
the victim’s cache during the victim’s context switch is useless.
Therefore, it is a technical difficulty to resist cache based side-
channel attacks in the context of ARM TrustZone.

SecTEE is designed to be incorporated into the TrustZone
software architecture. Compared to Intel SGX, a main difference
of the SecTEE architecture is that there is a specialized OS, i.e.,
TEE OS, for enclave management, and all enclave management
functionality, such as memory management, enclave loading, and
initialization, is moved from host system software to the TEE OS.
This approach allows system designers not to expose memory
management and scheduling of enclaves to host system software,
and further allows us to deploy a mechanism of resisting memory
access based side-channel attacks in the memory management
service. Another benefit of this approach is that it reduces host
applications’ complexity and allows host application developers
to focus on the software logic and ignore the burden of enclave
management.

SecTEE extends to the TEEOS critical trusted computing features
required by secure enclaves, including enclave identification, enclave
measurement, remote attestation, data sealing, secrets provisioning,
and life cycle management of enclaves. Secure enclaves run as
trusted applications (TA) on the security-enhanced TEE OS. The
extended trusted computing features expose their interfaces to
enclaves as system calls. When an enclave is going to be loaded
into the system, the security-enhanced TEEOS verifies the enclave’s
identity, measures and checks its integrity. After loaded, the enclave
could invoke the extended system calls to store its sensitive data
and attest its identity and integrity to an external entity. After the
attestation, the external entity can provision secrets to the enclave.

Session 8B: TEE I CCS ’19, November 11–15, 2019, London, United Kingdom

1724

From an enclave developer’s perspective, SecTEE is a security-
enhanced TEE architecture. A developer builds his enclave like
programming a TA and exposes the interfaces of the enclave to host
applications as TA commands. Host applications use the services of
the enclave by invoking the corresponding TA commands. Besides,
the developer needs to compute the initial measurement of the
enclave and signs the measurement using his signing key. The
measurement and identity of the enclave will be verified when it is
loaded into SecTEE.

We have implemented SecTEE on a TrustZone-enabled platform,
NXP i.MX6Q development platform. We evaluate the performance
overhead introduced by SecTEE using a mature TEE test suite tool
Xtest [67] and some security enclaves. The evaluation results show
that the overhead mainly comes from software encryption and that
the trusted computing features only introduce acceptable overhead.
In summary, the key contributions of this paper include
• A new secure enclave architecture for commodity ARM plat-
forms, SecTEE, which can be incorporated into ARM TrustZone
software architecture and achieves the highest level of security
for secure enclaves, that is, resistance to board-level physical
attacks, strong isolation, and resistance to memory access based
side-channel attacks.

• The page coloring technique cannot prevent cache based side-
channel attacks against TrustZone, especially the cross-core
attacks. To address this technical difficulty, we design a locking
mechanism which locks the enclave pages in the cache and
combine it with the page coloring technique to resist memory
access based side-channel attacks against TrustZone. This
approach demonstrates that hiding the memory management
of secure enclaves from host software is a practical way to
eliminate memory side channels.

• An approach to adding rich trusted computing features to TEE
systems, which enables TEE systems to identify, measure, attest
security applications, seal sensitive data, and enables users to
provision secrets to them.

• An implementation of the SecTEE architecture on a mature
TEE system, showing that it is feasible to deploy SecTEE
on mature TEE systems. The evaluation results show that
memory encryption incurs most performance overhead, and
that the extended trusted computing features impose acceptable
overhead.
The rest of the paper is organized as follows. Section 2 gives the

background information related to this paper. Section 3 describes
the threat model. Section 4 lists the design goals of SecTEE and
outlines an overview of SecTEE design. Section 5 illustrates the
details of SecTEE architecture. Section 6 implements and evaluates
our prototype system. Section 7 surveys related work. Section 8
concludes this paper.

2 BACKGROUND
2.1 Intel SGX
Intel SGX is a set of CPU instructions for creating, running, and
managing secure enclaves. SGX separates a memory region from
DRAM, called PRM (Processor Reserved Memory), for enclaves.
Enclaves’ code and data are stored in Enclave Page Cache (EPC)
pages of the PRM. SGX enforces an access-control policy on PRM

to prevent PRM from being accessed by non-enclave software. So
enclaves do not need to rely on the security of system software. SGX
also provides a specialized Memory Encryption Engine (MEE) [39]
to encrypt and perform integrity checks on PRM, which prevents
physical attacks from reading or manipulating enclaves’ code and
data. In a word, SGX offers a high level of software and physical
security for enclaves.

An enclave is mapped to a reserved memory area of the virtual
address of a host application, called ELRANGE (Enclave Linear
Address Space). The virtual address outside ELRANGE is used
to map non-enclave code and data. SGX prevents non-enclave
software from accessing ELRANGE, while the enclave software
in the ELRANGE is able to access the non-enclave address space.

SGX leverages host system software to manage enclaves, such
as creating, loading, and scheduling enclaves. The system software
needs to allocate EPC pages for a newly created enclave, load the
initial code and data into the enclave, and establish the memory
mapping between ELRANGE and EPC pages using its page tables.
The system software is also able to interrupt and resume the enclave
like a normal process. As the system software thatmanages enclaves
is untrusted, the SGX hardware needs to measure the loaded code
and data of an enclave and check the measurement results with
the value specified by the enclave developer. Unfortunately, as SGX
allows the untrusted system software fully controlling enclaves,
practical side-channel attacks [9, 32, 73, 91, 94, 114] are proposed, in
which attackers can infer information of an enclave by scheduling
it and manipulating its page tables.

2.2 ARM Cache Architecture
ARM CPU is a modified Harvard architecture and typically has two
levels of caches. The level one (L1) cache consists of two separate
caches, an instruction cache (I-cache) and a data cache (D-cache).
The level two (L2) cache is unified and holds both instructions and
data. For a cache architecture, if all data from lower levels must be
stored in a higher level cache, it is called inclusive; if data can only
reside in one of the cache levels, it is called exclusive; if the cache
is neither inclusive nor exclusive, it is called non-inclusive. Unlike
most modern CPUs, which have either inclusive last-level caches
(LLC) (Intel CPUs) or exclusive LLC (AMD CPUs), ARM CPUs do
not fix their policy on cache inclusiveness: caches can be inclusive,
exclusive, or non-exclusive.

A cache line is the unit of data transfer between the cache
and main memory. ARM CPU caches are organized as N-way set
associative caches. The cache is divided into N equally-sized pieces,
called ways, and each way consists k cache lines with indexes 0 ∼
k-1. The cache lines from all ways with the same index compose
a cache set. The main memory is divided into blocks, and the size
of a block is equal to the size of a cache way. The ith entry of a
memory block can be loaded into any one of the N cache lines in
the (i mod N)th cache set. On CPUs with TrustZone extensions,
each cache line is extended with an NS bit, indicating the cache
line belongs to the secure world or the normal world.

The ARM CPU architecture provides programmers with cache
maintenance operations: invalidation, cleaning, zero, and preload.
Invalidation of a cache means to clear its data; cleaning a cache
means to write its contents to the next level of cache or to main

Session 8B: TEE I CCS ’19, November 11–15, 2019, London, United Kingdom

1725

memory; zero a cache means to zero a block of memory with the
cache; preload instructions allow programmers to preload memory
content to cache. In TrustZone-enabled systems, operations per-
formed from the normal world only affect the non-secure cache
lines, while operations performed from the secure world can affect
all cache lines.

2.3 SoC-bound Execution Environments and
the OP-TEE Pager System

SoC-bound execution environments are software-based approaches
to resisting physical attacks. The idea is to leverage the memory
inside SoC, such as CPU registers [26, 74, 75, 96], CPU caches
[37, 38, 120, 121], GPU registers and caches [109], or on-chip
memory (OCM) [11, 15, 36, 43, 82, 119, 123], to build a secure
execution environment for security-critical code. Sensitive data
shall be encrypted when it is swapped out of the environment, and
thus physical attacks against hardware components outside the
SoC are prevented.

OP-TEE [65] is a popular open source TEE OS maintained by
Linaro, which implements a Trusted Execution Environment using
ARM TrustZone technology and is compatible with GlobalPlatform
TEE specifications. To prevent physical attacks, an SoC-bound
execution environment called Pager [66] is proposed.

Technically, Pager is a demand paging system separated from
the OP-TEE kernel, which is responsible for maintaining execution
of the rest components of OP-TEE kernel and TAs. It sets the OCM
as the working memory for CPU to execute the OP-TEE system,
and uses the DRAM as a backing store. Pager runs on the OCM, and
the other components of the OP-TEE kernel and TAs are encrypted
and stored in the DRAM. Pager manages swapping between the
OCM and DRAM: when code or data stored in DRAM is demanded,
Pager decrypts and performs integrity check on the corresponding
page, and loads it into the OCM; when an OCM page needs to be
swapped to DRAM, Pager encrypts it.

3 THREAT MODEL AND HARDWARE
REQUIREMENTS

3.1 Threat Model
SecTEE aims to achieve the same security level of modern secure
enclave architectures, which protects the confidentiality and in-
tegrity of enclaves from an adversary who has full control of the
system software and hardware components outside of the SoC, such
as DRAM and peripherals. We require that the platforms where
SecTEE is deployed support the ARM TrustZone technology.

At the software level, the commodity OS in the normal world is
untrusted and potentially compromised. The adversary can access
interfaces of the TEE system. He can create and load malicious
enclaves to the system. However, we assume that the TEE OS is
trustworthy and provides isolation for TAs running on it because
we do not aim to increase the security of TEE OS regarding software
attacks.

At the hardware level, we assume that the SoC is trusted, and
all components outside of the SoC are assumed to be vulnerable,
including DRAM, address and data buses between CPU and DRAM,
other I/O devices, and so on. So the adversary is able to probe the

CPU-DRAM bus, observe and tamper with the DRAM contents, and
launch malicious peripherals. In particular, the following practical
physical attacks are within our threat model: cold boot attacks,
bus probing attacks, and DMA attacks. We do not consider attacks
against internal states of the SoC, which are sophisticated and
require expensive equipment.

3.2 Hardware Requirements
We list the hardware primitives required by SecTEE, which are
common on modern mobile devices.

Device Sealing Key (DSK). It is a symmetric key generated in
the SoC during manufacturing. It is only known by the device, and
even the manufacturer does not know it. DSK is used to protect
secrets that are related to a device. As no other devices know this
key, secrets protected by it are bound to the device, and other
devices cannot get them. This key may be referred to as other
terminologies, such as the Seal Secret in SGX [16] or Device-Unique
Hardware Key (DUHK) in Samsung’s KNOX [88].

Device Root Key (DRK). It is an asymmetric key pair generated
at manufacture time and signed by the manufacturer’s root key
through a certificate. Its private part should be stored in the secure
storage of the device, such as processor’s eFuses. As DRK is device-
unique and signed by the manufacturer, it can be used to identify
and authenticate the device.

Manufacturer’s Public Key. The public part of the manufac-
turer’s root key should be hard-coded into the SoC. Software
developed by the manufacturer should be signed by the private part
of the manufacturer’s root key, including TEE OS and some special
TAs. The hard-coded public key can be used to verify whether a
loaded software component is issued by the manufacturer, and thus
the secure boot and TCB of the TEE system can be established.

4 DESIGN OVERVIEW
4.1 Design Goals
Security. The designed system should be able to resist all kinds
of practical attacks against secure enclave architectures. First, it
should provide complete isolation of enclaves from host software,
including privileged system software. Second, it should prevent
practical physical attacks, in particular, attacks against hardware
components outside of the chip. Third, it should be able to resist
memory access based side-channel attacks.

Compatibility. The design should be compatible with standard
ARM TEE system architectures, such as GlobalPlatform TEE system
architecture [30], so that it can be deployed to existing TEE systems.

No requirements for specialized hardware memory pro-
tection mechanisms. We want our design to be deployed on
commodity ARM platforms, which are not provided with hardware
protection mechanisms to prevent physical attacks and memory
access based side-channel attacks. So the design should achieve
the security goal under the assumption that only a common CPU
architecture is provided and no specialized hardware protection
mechanism is available.

Rich trusted computing features. Trusted computing fea-
tures, such as integrity measurement, remote attestation, and data
sealing, are becoming indispensable means for modern computing

Session 8B: TEE I CCS ’19, November 11–15, 2019, London, United Kingdom

1726

platforms to guarantee their security. It is necessary for a secure
enclave architecture to provide rich trusted computing features.

4.2 Overview of SecTEE
SecTEE, illustrated in Figure 1, is a TEE system that satisfies en-
claves’ both security requirements and functionality requirements
for trusted computing. SecTEE leverages the SoC-bound execution
environment technology and isolation mechanism provided by
ARM TrustZone to achieve the physical and software security
respectively, and its kernel provides the mechanism of resistance
to memory access based side-channel attacks.

CPU

O
C

M

Enclave
Management

TZ
 I

nt
er

fa
ce

TEE OSNormal OS

Enclave

Normal World Secure World

Untrusted Data

cmd_1(){
 . . .

}

 SoC-bound
Execution

Environment

 . . .
 InvokeCmd(cmd_x);
 . . .

M
o

n
it

o
r

Untrusted code

Host APP

TC Features

. . .
cmd_2(){
 . . .

}

Sensitive Data

SoC

System Calls

Side-channel
Resistance

Figure 1: An Overview of SecTEE

Secure enclaves are implemented as TAs in the TEE system. To
create an enclave for a host application, the enclave author first
identifies the sensitive code and data of the host application, then
creates a TA, and finally moves the sensitive code and data into the
TA. The enclave exposes its interfaces to the host application as TA
commands, and the host application can run the sensitive code by
invoking the TA commands.

As enclaves are implemented as applications of the TEE OS, it is
natural to integrate the enclavemanagement into the TEEOS kernel.
So our design does not expose enclave management interfaces to
host system software (while Intel SGX does), but directly leverages
the TA management functionality of the TEE OS. The enclave
management functionality is responsible for memory management
of enclaves and invoking, interrupting, resuming, and scheduling
enclaves.

SecTEE extends trusted computing features to the TEE OS kernel,
which can be used to identify, measure, and attest enclaves, and
to protect sensitive data of enclaves. These features expose their
interfaces to enclaves as system calls (Table 1). We identify the
following trusted computing features that modern secure enclave
architectures should provide.
• Enclave identification. A platform supporting secure enclaves
should be able to identify the author of an enclave loaded

on it. To achieve this goal, an enclave author should sign his
enclaves using his own signing key, and the platform identifies
the enclave’s author by verifying the signature.

• Enclave measurement. The platform should measure the in-
tegrity of the enclave before running it. The measurement
results present the good/bad state of enclaves, and they can be
used by the platform to perform remote attestation.

• Remote attestation. This is a key feature of a trusted computing
system, by which a platform can convince a verifier that an
enclave is in a good state and runs on a trusted system. This
feature can be achieved by a signature on the measurement of
the attesting enclave using a certified attestation key. Since we
assume that the TEE OS is trustworthy, TEE OS rollback attacks
are not considered in SecTEE’s design and implementation. To
prevent such attacks, hardware monotonic counters or rollback
prevention fuses [88] are needed.

• Data sealing. This feature is used to bind sensitive data to an
enclave and a platform, and ensures that only the particular
enclave running on the specific platform can access the bound
data.

• Secret provisioning. This feature enables a remote data owner
to provision his sensitive data to an enclave. The remote data
owner is convinced that the enclave is running on a trusted
platform and the confidentiality of the sensitive data that will
be provisioned can be guaranteed. Typically, this feature is
conducted through remote attestation and a secure channel.

Comparison with Sanctuary [8]. Sanctuary is also a secure
enclave architecture for ARM CPUs. It provides isolated compart-
ments for security-sensitive code based on TrustZone and enables
SGX-like usage of these compartments. We compare SecTEE with
it in the following aspects: security, trusted computing primitives,
and the TCB size.

• Security. Sanctuary only provides isolation for enclaves, while
SecTEE achieves a much higher security level: in addition
to isolation, SecTEE provides both resistance to board-level
physical attacks and resistance to memory access based side-
channel attacks, which are requirements of modern secure
enclave architectures, such as Intel SGX, Komodo, and Sanctum.
Besides, Sanctuary adopts a design similar to Intel SGX: it
leverages the system software in the normal world to manage
enclaves’ resource, such as memory allocation. From lessons
we learned from the-state-of-art architectures (Section 4.3), it
is hard for this kind of design to add protection mechanisms
against memory access based side-channel attacks.

• Trusted computing primitives. SecTEE provides more com-
prehensive trusted computing primitives than Sanctuary, such
as the key hierarchy of platforms and secrets provisioning, and
illustrates all the details of these trusted computing primitives.

• TCB size. Sanctuary does not increase the TCB of TEE systems
because it executes enclaves in isolated compartments in the
normal world. Although SecTEE has an increase of TCB, the
increase is acceptable (evaluated in Section 6.1), and we give
suggestions on how to decrease TCB in Section 6.1.

In conclusion, SecTEE has a larger TCB than Sanctuary, but the
increase of TCB is acceptable, and SecTEE achieves the highest

Session 8B: TEE I CCS ’19, November 11–15, 2019, London, United Kingdom

1727

Table 1: SecTEE System Calls

System Calls Description of SecTEE Operations

syscall_request_AK(void *pubAK, void *sigDRK) Generate an attestation key AK and sign it with the device root key.
syscall_seal_AK(bool flag, void *SealedAK) Receive a flag indicating whether the generated attestation key is approved by the

manufacturer, and if it is true, seal the attestation key.
syscall_import_AK(void *SealedAK, void *sigDRK) Import a sealed attestation key SealedAK.
syscall_remote_attestation(char *report_data, Perform attestation on report_data, and store the attestation result

void *attest_sig) in attest_sig.
syscall_seal(char *data, char *ciphertext) Seal data and return the result to the invoking enclave.
syscall_unseal(char *ciphertext, char *data) Unseal the sealed data ciphertext and return the result to the invoking enclave.
syscall_provisioning(void *DH_A, void *DH_B, Attest the trustworthiness of the invoking enclave to a remote party,

void *sigAK, void *DH_shared) and establish a secure channel for data provisioning with the party.

security level of modern secure enclave architectures and provides
more comprehensive trusted computing primitives.

4.3 Lessons from Other Architectures
We analyze some popular secure enclave architectures in industrial
and academic areas: Intel SGX, Sanctum [17], and Komodo [22], and
describe lessons we have learned from these architectures, which
help us to design SecTEE.

Actually, all of these secure enclave architectures provide similar
trusted computing features and management functionality for
enclaves. The main difference among them is the way of managing
enclaves. Figure 2 shows the design overviews of SGX, Sanctum,
and Komodo.

Intel SGX (Figure 2 (a)) implements the management functional-
ity and trusted computing features in the processor and exposes
their interfaces as ISA (Instruction Set Architecture) extensions. In
SGX, enclaves are implemented as isolated execution environments
embedded in the address spaces of host applications. The OS is
responsible for managing enclaves, such as allocating memory for
enclaves, managing virtual-physical address mappings for enclaves,
loading initial data and code into enclaves, and scheduling enclaves.
However, the abilities of controlling memory management and
scheduling enclaves lead to memory access based side-channel
attacks against SGX. One type of side-channel attacks learns about
the memory page usage of an enclave by exploiting page faults
of the enclave [94, 114]. The other type of these attacks is cache
attacks [9, 32, 73, 91] which learn the memory access patterns of
an enclave.

Sanctum (Figure 2 (b)) is an SGX-like secure enclave architecture
for the RISC-V architecture. It achieves the same level of software
security as SGX, but does not offer protection against any physical
attacks due to the lacking of memory encryption engines. One
important contribution of Sanctum is that it adds full protection
against memory access based side-channel attacks such as page
fault monitoring attacks and cache attacks. It achieves this goal
by setting individual page table for each enclave and modifying
the cache hardware to ensure that each enclave uses distinct
cache sets. Compared to SGX, one advantage of Sanctum is that
it leverages the hardware-software co-design to achieve minimal
hardware modifications. Most of its trusted computing features are
implemented in a trusted software secure monitor and invoked
through monitor calls that mirror SGX ISA instructions.

Komodo (Figure 2 (c)) is a hardware-software co-design of secure
enclave architecture. It aims to disentangle the enclavemanagement

(such as memory management) and trusted computing features
(such as measurement and remote attestation) from basic hardware
mechanisms (such as isolation and memory protection). Komodo
delegates the enclave management and trusted computing features
to a privileged software monitor, making it easy to update and patch
security flaws. AlthoughKomodo isolates enclaves’ page tables from
the untrusted OS, it still relies on the untrusted OS to manage and
schedule enclaves. So it is vulnerable to cache attacks, and that’s
why memory access based side-channel attacks are excluded in its
threat model.

Lessons. From the above analysis, we obtain the following two
lessons. First, implementing the whole secure enclave architecture
in hardware is inflexible. For example, it is hard to fix up memory
side channels for CPUs that have been shipped. Software is much
more malleable than hardware, so it is better to combine necessary
hardware security mechanisms with software to implement the
architecture in a flexible and updatable way. Both Sanctum and
Komodo adopt this approach. Second, relying on the untrustedOS to
manage enclaves (especially memory management and scheduling)
enables attackers to launch software side-channel attacks, such as
side-channel attacks against SGX. To prevent this kind of attacks,
the above three secure enclave architectures have to modify their
CPU hardware, such as Sanctum’s cache partitioning scheme. The
lessons we learn from these architectures help us to present a
better design of SecTEE. First, SecTEE only requires basic hardware
security components, and most of its functionality is implemented
in software, which makes it flexible for manufacturers to fix up
security flaws and add new features. Second, SecTEE puts the
enclave management functionality inside the TEE OS, so the host
software is unable to control memory management of enclaves
or schedule enclaves. This design makes it possible for system
designers to enforce mechanisms of resisting memory access based
side-channel attacks. Another reason for us to put the enclave
management inside TEE OS is that, in the TrustZone software
architecture, the TEE OS is designed to manage TAs. So SecTEE
can be easily incorporated into the ARM TrustZone architecture.

5 SECTEE ARCHITECTURE
This section describes the details of the SecTEE architecture.

5.1 Memory Protection
To protect enclaves from physical attacks, SecTEE leverages the
SoC-bound execution environment technology, such as OP-TEE
Pager, to provide memory protection on the whole TEE system. The

Session 8B: TEE I CCS ’19, November 11–15, 2019, London, United Kingdom

1728

SGX ISA Extensions

Memory
Protection

Host APP Enclave

CPU

ISA

OS

TC
Features

Enclave
Management

ELRANGE

Page Tables

Untrusted
Code

Trusted Code

Map

Side-channel
Resistance

Host APP Enclave

CPU

Monitor

OS
Enclave

Management

EVRANGE

Untrusted
Code

Trusted Code

TC Features Page Tables

Monitor Calls
Map

Host APP Enclave

CPU

Monitor

OS
Enclave

Management

Untrusted
Code

Trusted Code

TC Features Page Tables

Monitor Calls
Map

(a) SGX (b) Sanctum (c) Komodo

Figure 2: Design Overviews of SGX, Sanctum, and Komodo

SoC-bound execution environment is a demand paging system with
memory protection mechanism. It runs the whole TEE system on
the OCM, and uses the DRAM as a backing store for the TEE system.
It also guarantees the confidentiality and integrity properties for
the backing store: when a page in the OCM is going to be swapped
out of the OCM, the memory protection component encrypts and
hashes the page; when a page in the backing store is demanded
and swapped into the OCM, the memory protection component
decrypts the page and performs integrity check on it.

5.2 Side-channel Resistance
Since all page faults of enclaves are handled by the SecTEE
kernel, host software is unable to learn memory page usage by
manipulating page tables, thus page fault based side-channel attacks
are prevented directly. So we focus on how to prevent cache attacks.

5.2.1 Resisting attacks from the secure world. The basic require-
ment of launching cache attacks from the secure world is to load
an attack enclave to memory locations which share the same
cache sets with the victim enclave. Then the attacker can use
the attack methods – Evict+Time, Prime+Probe [80], Flush+Reload
[116], Evict+Reload [35], and Flush+Flush [34] – to learn the victim
enclave’s memory access patterns, and can even launch cross-core
attacks [40, 47, 49–51, 68, 69, 113, 116] by exploiting the LLC.

We prevent cache attacks from the secure world by a page
coloring mechanism: modifying the memory management service
of SecTEE kernel to make different enclaves never share cache sets.
Then no matter how the attacker manipulates the attack enclave
(including launching cross-core attacks), it will not affect the cache
of the victim enclave. As the working memory of enclaves is the
OCM, we only need to guarantee that all the OCM pages assigned
to an enclave do not have collisions in cache sets with OCM pages
of other enclaves.

We propose a separation scheme for OCM to achieve the above
goal (Figure 3). Suppose the cache is an N -way set associative cache,
the total size of the cache is ST , the size of each cache line is SCL,
the size of each cache way is SW = ST /N , and the size of one page
is SP . We divide each cache way into p (p = SW /SP) page-sized
blocks, and blocks from all ways with the same index compose a

Cache way

Cache
line

OCM

Page-sized
cache set

...

Page 0

Page 1

 Page
Size...

...

...

0 1
... N-1

 Page
Size

 Page
Size

Page set 0

Page set 1

Page set p-1

...

Figure 3: OCM Separation Scheme

page-sized cache set. Suppose the size of OCM is SOCM , and we call
all pages that map to the same page-sized cache set a page set. As
pages from different page sets do not map to the same page-sized
cache set, we load enclaves into different page sets to guarantee
the isolation of their cache sets:
(1) When an enclave is invoked, SecTEE assigns a free page set

for it, and pages of this enclave will be loaded into pages of
this page set. If there are no free page sets, SecTEE chooses a
page set that has been used least recently (LRU), swaps all the
pages of the page set into the DRAM, and finally uses cache
maintenance operations to clean and invalidate the page-sized
cache set of the page set. Figures 4 and 5 show the assembly
code of using the DCCISW operation to clean and invalidate
a range of cache sets on ARMv7 and ARMv8 architectures
respectively.

(2) When an enclave needs to load a page from DRAM to OCM
and it happens to run out of all pages of its page set, SecTEE
allocates a new page set for the enclave if there are free page
sets, and if no free page sets are left, SecTEE frees an OCM
page by swapping the enclave’s least recently used page from
the OCM to the backing store and loads the demanded page
into the just freed OCM page.

Session 8B: TEE I CCS ’19, November 11–15, 2019, London, United Kingdom

1729

/* R0: the maximum way number;
* [R1, R2]: the set range of the enclave;
* R3: 32 - Log2(ASSOCIATIVITY);
* R4: Log2(LINELEN);
* R10: Cache number;
* ASSOCIATIVITY and LINELEN are parameters defined in CCSIDR
*/
SUB R10, #1
LSL R10, R10, #1

LOOP_WAY:
MOV R7, R2

LOOP_SET:
ORR R11, R10, R0, LSL R3 ;factor in the way number and cache

number into R11
ORR R11, R11, R7, LSL R4 ;factor in the set index number
MCR p15, 0, R11, c7, c14, 2 ;DCCISW operation
SUB R7, R7, #1 ;decrement the set number
SUBS R8, R7, R1
BGE LOOP_SET
SUBS R0, R0, #1 ;decrement the way number
BGE LOOP_WAY

Figure 4: Cache Clean and Invalidate for ARMv7

/* W0: the maximum way number;
* [W1, W2]: the set range of the enclave;
* W3: 32 - Log2(ASSOCIATIVITY);
* W4: Log2(LINELEN);
* W10: Cache number
*/
SUB W10, #1
LSL W10, W10, #1

LOOP_WAY:
MOV W7, W2

LOOP_SET:
ORR W11, W10, W0, LSL W3 ;factor in the way number and

cache number into W11
ORR W11, W11, W7, LSL W4 ;factor in the set index number
DC CISW, X11 ;DC CISW operation
SUB W7, W7, 1 ;decrement the set number
SUBS W7, W7, W1
B.GE LOOP_SET
SUBS X0, X0, 1 ;decrement the way number
B.GE LOOP_WAY

Figure 5: Cache Clean and Invalidate for ARMv8

Take the NXP i.MX6Q platform based on which we implement
our prototype as an example, it has a 16-way 1MB L2 unified cache
and 256KB OCM, and the page size is 4KB. We divide the OCM
into p = SW /SP = 1MB/16/4KB = 16 page sets, and the size of
each page set is 256KB/16 = 16KB. So we can run 16 enclaves
simultaneously at most, which is enough for the host OS.

5.2.2 Resisting attacks from the normal world. In ARM TrustZone,
cache maintenance operations only affect non-secure caches, so
attackers from the normal world cannot leverage cache mainte-
nance operations to manipulate caches of the secure world. So
the cache attacks relying on cache maintenance operations such
as Flush+Reload and Flush+Flush will not succeed in the normal
world. Thus, attackers from the normal world can only launch cache
attacks based on memory operations, such as Prime+Probe.

Unfortunately, the page coloring technique cannot protect ARM
TrustZone from cache attacks because in the context of ARM
TrustZone, it does not partition all the memory but only the secure
memory into separate page sets, and the normal world’s memory,
which shares all caches with the secure world, can be leveraged to
launch cache attacks.

To prevent cache attacks from the normal world, SecTEE cleans
and invalidates all the cache lines of the invoked enclave when the
CPU switches from the secure world to the normal world. As ARM
architecture does not use inclusive LLC, SecTEE needs to clean and
invalidate all cache levels.

Cleaning the caches of the invoked enclave when CPU returns
to the normal world only prevents a local attacker on the same
core from learning the access patterns of the enclave, but cannot
prevent cross-core cache attacks: the attacker canmonitor the cache
usage of a victim enclave by manipulating a spy program which
shares the same cache sets with the victim enclave and runs on a
different core. Since the spy program performs its attack during
the execution of the victim enclave, the cache cleaning operations,
which happen only when the core switches back to the normal
world, cannot prevent this attack.

To prevent cross-core cache attacks against ARM TrustZone, we
design a locking mechanism to lock the OCM pages of enclaves
in the cache: when an enclave is invoked, SecTEE preloads its
pages into the cache when they are loaded from DRAM to OCM
and then uses the ARM cache locking mechanism [120] to lock
the corresponding cache lines. Since the caches of the enclave
are locked, manipulating the memory in the normal world cannot
probe or manipulate the cache lines of the enclave. The details of
the locking mechanism are as follows.

(1) When SecTEE assigns a free page set for some enclave, it cleans
and invalidates the page-sized cache set of the page set.

(2) When a page is loaded from DRAM to OCM, SecTEE chooses a
free page-sized cache block from the cache set that corresponds
to the OCM page, uses the preload operation to load the OCM
page into the page-sized cache block, and then locks the cache
block.

(3) When an OCM page is swapped out to DRAM, SecTEE unlocks,
cleans, and invalidates the corresponding page-sized cache
block. However, as ARM only provides a coarse-grained cache
locking mechanism that only locks certain cache ways, SecTEE
needs to re-lock the way which the cache block belongs to if
the cache way still contains any preloaded OCM page.

Take the NXP i.MX6Q platform as an example, we split its L2
cache into 16 page sets, so each page set contains 256KB/4KB/16 =
4 pages. Since the L2 cache has 16 cache ways, each page set can
be preloaded into the cache entirely.

5.2.3 Analysis of Different Timing Caused by Cache Maintenance.
Cache maintenance exhibits different timing: attackers can distin-
guish whether SecTEE cleans the cache of an enclave by probing the
memory locations sharing the same caches with the enclave (see the
probing timing on OP-TEE and SecTEE in Section 6.5.2). However,
cache operations of SecTEE clean all the caches of an enclave (the
target of cache attackers), so attackers do not know which memory
address is accessed by the enclave. Our experimental results of
probing operations on SecTEE (Section 6.5.2) show that attackers
cannot distinguish whether a memory location is accessed by the
enclave. Similar results are presented by our cache attacks on AES
(Section 6.5.3): attackers cannot distinguish which T-table entry is
accessed.

Session 8B: TEE I CCS ’19, November 11–15, 2019, London, United Kingdom

1730

5.3 Key Hierarchy

PubMRKPrivMRK Manufacturer Root Key (MRK)

PubDRK PrivDRK

Sign

Certificate

Verifier

Tamper-Resistance
Hardware

DRK DSK PubMRK

ROM

Attestation Key

Proof of DRK Ownership
Sign

Certificate

Encrypted
Attestation Key

Attestation Key
Certificate

Root
Certificate

AK
Service

Manu Root
Certificate

Trust

Measurement

Attestation
Data

Attestation
Signature

Sign

Encrypt

DRK
Certificate

Device

Non-volatile Memory

Privileged
Enclaves

Verify

Trust

Figure 6: Key Hierarchy of SecTEE

The key hierarchy of SecTEE (Figure 6) is based on three
hardware keys: device root key (DRK), device sealing key (DSK),
and the public key of the manufacturer (PubMRK). All the three
keys are generated during manufacture time. DRK and DSK should
be stored in the secure hardware of the device, such as Battery-
backed RAM (BBRAM) or eFuses. PubMRK is required to be tamper-
resistant only, so it can be hard-coded into the ROM.

DRK is an asymmetric key (PubDRK, PrivDRK) and unique to
devices. During the manufacturing process in the factory, the device
generates DRK and applies for a certificate from the manufacturer;
after receiving the request, the manufacturer signs the public part of
DRK (PubDRK) with its signing key PrivMRK , produces a certificate
CERTDRK , and stores CERTDRK in the non-volatile memory of the
device, such as flash. CERTDRK and DRK will be used to prove to
remote parties that the device is a genuine trusted device. DRK is
only accessible by specially privileged software within the secure
world, i.e., the TEE OS.

DSK is a device-unique symmetric key used to protect device-
related sensitive data, such as attestation keys. As the key is
device-unique, data encrypted by it is bound to the device and
not accessible to other devices.

We refer to the enclaves provided by the manufacturer as
privileged enclaves, and there are some operations that only can

be performed by these enclaves, such as importing an attestation
key. PubMRK can be used to verify whether a software component
is approved by the manufacturer, and SecTEE uses PubMRK to
identify privileged enclaves.

5.4 Enclave Identification and Measurement
Before running an enclave, SecTEE needs to recognize the identity
of the enclave and make sure that the enclave is intact and
exactly the one published by the author, so a scheme for enclave
identification and integrity measurement is needed.

SecTEE requires that each enclave author should have a signing
key. After the author has built the software image of the enclave,
he first measures the software image and generates the standard
integrity value of the image. Then he assigns a software ID to the
enclave, and generates a certificate for the standard integrity value
and software ID by signing them with his signing key. Finally, the
author appends his public key and the certificate to the end of the
software image and publishes the enclave.

During runtime, SecTEE maintains an information table storing
critical information of the enclaves running on it. The table stores
the enclave ID, integrity, and a bool flag indicating whether the
enclave is privileged. The enclave ID is composed of the public part
of the author’s signing key and the software ID assigned by the
author, and the bool flag is set by comparing the public part of the
author’s signing key with the MPK in the SoC. SecTEE takes the
following steps to load an enclave. First, it uses the public key of
the author to verify the certificate of the enclave, and only when
the verification succeeds, it decodes the certificate and extracts
the software image, software ID, and standard integrity value of
the enclave. Second, it measures the software image and verifies
the measurement result using the standard integrity. Third, if the
integrity verification passes, SecTEE loads the software image into
the enclave address space. Finally, SecTEE allocates and fills an
entry of the information table for the enclave.

5.5 Remote Attestation
Intel SGX implements the remote attestation mechanism as a
privileged Quoting Enclave. As it is impossible for enclaves to
share sensitive pages in SGX, a prover enclave is unable to
communicate with the Quoting Enclave. SGX solves this problem
with a local attestation mechanism, which is implemented as
an enclave instruction EREPORT . The EREPORT generates an
attestation report which can be transferred to the Quoting Enclave
via the host application, and the Quoting Enclave leverages the
report to generate the real remote attestation report. In SecTEE,
as each enclave can perform remote attestation by invoking the
corresponding system call, the local attestation mechanism is
unnecessary.

SecTEE implements the remote attestation mechanism in kernel,
and system calls which can be used to request and import attestation
keys and perform remote attestation are exposed to enclaves
(the syscall_request_AK, syscall_seal_AK, syscall_import_-
AK, and syscall_remote_attestation system calls listed in Table
1). Attestation keys are critical for secure enclave architectures
because they are used to attest the trustworthiness of the platform
and all enclaves. So it is reasonable to perform the operations of

Session 8B: TEE I CCS ’19, November 11–15, 2019, London, United Kingdom

1731

SecTEE
Kernel

syscall_request_AK()

Quoting
Enclave

AK
Service

(PubAK, SigDRK,CertDRK)(PubAK, SigDRK)

syscall_seal_AK(flag)

SealedAK

CertAK

syscall_import_AK
(SealedAK, SigDRK)

AK = (PubAK, PrivAK);
SigDRK = Sign(PrivDRK, PubAK)

Check flag ?= true;
SealedAK = Enc(DSK, AK)

Verify(PrivDRK, SigDRK);
AK = Dec(DSK,SealedAK)

Store SealedAK for later usage

Verify SigDRK;
Issue a Cert CertAK for AK

Device Reboot

Figure 7: The Workflow of Quoting Enclave

requesting and importing an attestation key by trusted software,
such as software components approved by the manufacturer. To
this purpose, we implement a privileged Quoting Enclave to request
and import attestation keys, and other enclaves are forbidden to
perform these operations.

Quoting Enclave. The Quoting Enclave is a privileged enclave
published by the manufacturer. It is responsible for applying for
certificates for SecTEE’s attestation keys. The workflow of the
Quoting Enclave is as follows (Figure 7).
(1) If the device has no attestation keys, the Quoting Enclave

invokes syscall_request_AK to request the kernel to generate
an attestation key AK = (PubAK, PrivAK). After generating
AK , the kernel signs PubAK with DRK , and returns the
signature SigDRK and PubAK to the Quoting Enclave. SigDRK
is used to prove AK is generated in a trusted device.

(2) The Quoting Enclave sends the PubAK, SigDRK , and the cer-
tificate of DRK (CertDRK) to the AK service, which verifies
SigDRK . If the verification succeeds, the AK service issues a
certificate CertAK for AK and sends CertAK to the Quoting
Enclave.

(3) The Quoting Enclave invokes syscall_seal_AK, which sends
a bool value flag indicating whether the AK service issues a
certificate for AK . If flag = true, the kernel sets AK as its
attestation key, seals AK using DSK , and returns the sealed
attestation key SealedAK to the Quoting Enclave. The Quoting
Enclave saves SealedAK in the non-volatile memory.

(4) When the device is rebooted, the Quoting Enclave can import
AK to the kernel by invoking syscall_import_AK. The kernel
verifies the SigDRK and unseals the SealedAK with DSK to
obtain AK .

One step is not described in the above workflow: when the
kernel is invoked by syscall_request_AK, syscall_seal_AK, or
syscall_import_AK, it verifies whether the public key of the
invoking enclave is MRK , and only after the verification succeeds,
the kernel runs corresponding services. This verification is used to
ensure that only privileged enclaves can manage attestation keys.

Remote Attestation. Each enclave can perform remote attes-
tation by invoking the system call syscall_remote_attestation.

The kernel receives report_data that the invoking enclave wants
to attest, and signs report_data together with Measurement (the in-
tegrity value of the invoking enclave stored in kernel), with the attes-
tation keyAK : attest_sig = Sign(PrivAK, report_data| |Measurement).
After receiving attest_sig from the kernel, the invoking enclave
sends attest_sig, PubAK and AK ’s certificate CertAK to the verifier.
The verifier first validates the attestation key using CertAK , and
then verifies the attest_sig using PubAK . After the verification,
the verifier ensures that the integrity value of the enclave that
communicates with him is Measurement.

5.6 Data Sealing/Unsealing
Each enclave can use the sealing/unsealing system calls to bind
sensitive data to it and ensure that only enclaves with the same in-
tegrity state can use the data.When an enclave, denoted by Â, wants
to seal a piece of data data, it invokes the system call syscall_seal.
The kernel first derives a sealing key from the DSK and the
integrity value of Â:KÂ = HKDF(DSK,MeasurementÂ, klen), where
HKDF is an HMAC-based key derivation function whose output
length is klen, and MeasurementÂ is the measurement result of
Â stored in the kernel; then the kernel encrypts data using KÂ:
ciphertext = Enc(KÂ, data), and returns ciphertext to Â. When the
kernel receives the system call syscall_unseal, it first derives the
sealing key KÂ = HKDF(DSK,MeasurementÂ, klen), then uses KÂ
to unseal ciphertext: data = Dec(KÂ, ciphertext), and finally returns
data to Â.

The key used for sealing and unsealing operations is derived from
the device-unique key DSK and the measurement of the enclave,
so other devices and enclaves with different integrity values are
unable to derive the sealing key, and thus they are unable to obtain
the sealed data.

5.7 Secrets Provisioning
A remote data owner, denoted by D̂, can leverage the secrets
provisioning mechanism to provision sensitive data to an enclave
(denoted by Ê) whose integrity state he can validate. The secrets
provisioningmechanism can be seen as a combination of the SIGMA
authenticated key exchange protocol [57] and the remote attestation
mechanism. 1○ the data owner D̂ generates a DH key A = ga and
sends the public key A to the enclave Ê; 2○ the enclave invokes the
system call syscall_provision which transfers A to the kernel;
3○ the kernel generates a DH key B = gb, performs remote attes-
tation on A, B, and the measurement of the enclave Measurement:
SigAK = Sign(PrivAK,A| |B| |Measurement), computes a shared se-
cret sk = gab , and returns B, SigAK , and sk to the enclave; 4○ the en-
clave derives a session key ks = HKDF(sk, “session key”, klen) and a
MAC key km = HKDF(sk, “mac key”, klen), computes MACkm (Ê),
and sends B, Ê, SigAK , MACkm (Ê), PubAK , and CertAK to the
data owner; 5○ the data owner validates the attestation signature
SigAK , and after the validation, he computes a shared secret
sk = gab, derives a session key ks = HKDF(sk, “session key”, klen)
and a MAC key km = HKDF(sk, “mac key”, klen), and uses km to
verifyMACkm (Ê); 6○ the data owner signsA and B with its signature
key PrivDO: SigDO = Sign(PrivDO,A| |B), and sends D̂, SigDO, its
certificate CertDO, and MACkm (D̂) to the enclave; 7○ the enclave

Session 8B: TEE I CCS ’19, November 11–15, 2019, London, United Kingdom

1732

verifies SigDO andMACkm (D̂), and then the data owner and enclave
can transfer sensitive data to each other in the secure channel
established by ks .

5.8 Enclave Management
Figure 8 illustrates the life cycle of an enclave and the enclave
management functions that trigger transitions of the enclave states.
Only three of the enclave management functions — functions used
to open, invoke, and close enclaves — expose their interfaces to the
normal world. To keep compliant with GP TEE Client API specifica-
tion [29], the three interfaces are wrapped as TEEC_OpenSession,
TEEC_InvokeCommand, and TEEC_CloseSession (interfaces in the
rectangles of Figure 8). All the other management functions do not
expose interfaces to the normal world.

TEEC_
OpenSession

Non-
existing

Initialized

Running

Blocked

TEEC_
InvokeCommand

TEEC_
CloseSession

Interrupt
Thread

scheduler

Uninitialized

Non-
runnable

Resources allocation
(thread, memory)

Resources release
(thread, memory)

TEEC_
InvokeCommand

Figure 8: The Life Cycle of an Encalve

Unlike Intel SGX, which exposes all enclave management
instructions to host software, SecTEE only exposes three basic
management interfaces to host software, and most events that
trigger enclave management functions are captured and addressed
by the TEE OS directly. This kind of design helps SecTEE to resist
memory access based side-channel attacks because it eliminates
the abilities to manage enclaves’ memory and schedule enclaves
from host software, which are two critical ways for malicious hosts
to launch software side-channel attacks against enclaves.

5.9 Other Security Considerations
Denial-of-Service attacks. SecTEE designs a preemptive alloca-
tion scheme (Section 5.2.1) for page sets. So even if a malicious
host application occupies all page sets by loading multiple enclaves,
when a legal application tries to load its enclave, SecTEE will free
the least recently used page set and designate it to the enclave.

Interrupt based high-resolution channels. Like most TEE
systems, SecTEE designates IRQ interrupts to the normal world
and FIQ interrupts to the secure world. To prevent attackers
from leveraging IRQ interrupts to implement high-resolution
channels, such as attacks against SGX [73, 108], SecTEE disables
IRQ interrupts when running in the secure world by masking them.
An attack enclave may implement high-resolution channels based
on the FIQ interrupts, but since all enclaves do not share caches, it
can obtain nothing about cache usage of other enclaves.

6 IMPLEMENTATION AND EVALUATION
We implement a prototype based on OP-TEE v2.4.0 and leverage
the OP-TEE Pager system to provide an SoC-bound execution
environment for enclaves. All the trusted computing features, i.e.,
enclave identification, remote attestation, data sealing/unsealing,
and secrets provisioning, are extended to the OP-TEE kernel, and
the system calls listed in Table 1 are provided to enclaves. A Quoting
Enclave is implemented to manage attestation keys. We implement
two types of attestation keys: RSA-based keys and ECC-based keys,
whose lengths are 2048 bits and 256 bits respectively, and implement
the sealing/unsealing keys using 256-bit AES keys. Our prototype
is built on the NXP i.MX6Q Sabre-SD platform, which has an i.MX
6Quad SoC with 4 ARM Cortex-A9 1.2 GHz CPUs, 16-way 1MB
L2 unified cache, 256 KB OCM, and 1 GB DRAM. As the platform
does not satisfy the hardware key requirements of SecTEE, we
simulate the DRK and MRK by hard-coding two 2048-bit RSA keys
in software and simulate the DSK by hard-coding a 256-bit AES
key.

We evaluate the TCB size of SecTEE, the performance overhead
imposed by SecTEE, and the side-channel defense effectiveness
of SecTEE by performing well-known cache attacks on AES. The
performance evaluation is performed on four systems: the OP-TEE
OS without any trusted computing features, the OP-TEE Pager
system without any trusted computing features (denoted by Pager),
SecTEE without memory protection (denoted by SecTEE-plain),
and SecTEE. Pager is used to evaluate the performance overhead
of the trusted computing features to SecTEE, and SecTEE-plain is
used to evaluate the performance overhead incurred by the memory
protection mechanism to SecTEE.

6.1 TCB Size
Although our prototype is based on OP-TEE, SecTEE’s design is
not limited to it, and it can be applied to any other TEE OSes. So
the large codebase of OP-TEE does not indicate that any SecTEE’s
implementation has a large TCB. Furthermore, the large TCB and its
trustworthiness issues can be solved by the microkernel approach:
TEE OS based on formally verified OS has been proposed, such as
MicroTEE [52], a TEE OS based on seL4 [56].

To comprehensively evaluate the TCB introduced by SecTEE, we
measure the lines of source code of all the components of SecTEE
(Section 5) except the enclave management component: memory
protection, side-channel resistance, and trusted computing primi-
tives. We also measure the code size of cryptographic primitives
required by memory protection and trusted computing primitives,
including AES-GCM, SHA256, and RSA. Note that the enclave
management, memory protection, and cryptographic primitives are
of OP-TEE.We do not measure the enclave management component
because it is actually a combination of memory management,
process scheduling, and interrupt handling functionalities of an
OS. Since these functionalities are common for any TEE OS, we
believe that the enclave management component does not bloat
the TCB. The memory protection component has ∼2000 LOC, the
side-channel resistance component has ∼200 LOC, the trusted
computing primitives have ∼1700 LOC, and the cryptographic
primitives (we only measure the primitives required by SecTEE)
have ∼3500 LOC. So SecTEE adds ∼7400 LOC to the TCB. Note

Session 8B: TEE I CCS ’19, November 11–15, 2019, London, United Kingdom

1733

that the cryptographic primitives take up about half of the code,
and their trustworthiness can be improved by leveraging formally
verified cryptographic libraries, such as EverCrypt [83], HACL*
[124], Vale [7], and Vigilant’s CRT-RSA [86].

In conclusion, the whole TCB of SecTEE can be decreased by
leveraging the microkernel approach; SecTEE’s design increases
the TCB in an acceptable magnitude, and the trustworthiness of
the added TCB can be improved by adopting formally verified
cryptographic libraries.

6.2 Overhead of Trusted Computing Features
When host software invokes TEEC_OpenSession, SecTEE authenti-
cates the identity of the required enclave and measures its integrity,
so the execution time of TEEC_OpenSession represents the perfor-
mance overhead of enclave identification and measurement. The
overhead of other trusted computing features can be evaluated
by measuring the execution time of the corresponding system
calls (Table 1). For the system calls performed by attestation
keys (syscall_request_AK, syscall_remote_attestation, and
syscall_provisioning), we measure their performance when the
types of attestation keys are RSA and ECC respectively. The evalu-
ation results (Table 2) show that most system calls take acceptable
time except syscall_request_AK and syscall_provisioning,
and that the performance of syscall_request_AK is greatly
improved when the attestation key is the type of ECC.

Table 2: Performance of Trusted Computing Features (mil-
lisecond)

RSA-based AK ECC-based AK
TEEC_OpenSession 90.73 —
syscall_request_AK 23254 744.37
syscall_seal_AK 1.40 —
syscall_import_AK 10.47 —
syscall_remote_attestation 196.61 507.69
syscall_seal 0.90 —
syscall_unseal 0.90 —
syscall_provisioning 1186 1508.89
World Switch 0.08 —

6.3 Xtest Performance Evaluation
Xtest [67] is a test framework designed by Linaro for OP-TEE.
It contains two kinds of performance benchmarks: the trusted
storage benchmark and the crypto benchmark. It also contains
comprehensive tests of features of OP-TEE, including OS related
tests, socket related tests, crypto related tests, shared memory
tests, storage tests, GP shared memory tests, key derivation &
management tests, and secure storage tests. We perform the
benchmarks and all feature tests for the four systems: OP-TEE,
Pager, SecTEE-plain, and SecTEE. We run each test 100 times and
compute the geometric mean of the results.

6.3.1 Xtest Benchmarks. Figures 9 and 10 illustrate the results of
trusted storage and crypto benchmarks for the four systems. The
results are calculated by inputting data of different sizes to secure
services. Pager and SecTEE achieve similar performance, which
shows that the extended trusted computing features introduce little
overhead. For the trusted storage benchmark, SecTEE-plain is 1.2

times slower than OP-TEE, and SecTEE is 2.2 times slower than
OP-TEE. For the crypto benchmark, SecTEE-plain is 11.8 times
slower than OP-TEE, and SecTEE is 53.5 times slower than OP-TEE.
The reason that SecTEE’s performance impact on trusted storage
operations is less than on crypto operations is that trusted storage
operations need to invoke the file system service of the normal
world to store data, which takes a large part of the whole execution
time but is not affected by SecTEE.

6.3.2 Xtest Tests of OP-TEE’s Features. Figures 11 illustrates the re-
sults of Xtest tests of OP-TEE’s features for the four systems. SecTEE
is 3.9 times slower than OP-TEE on average, and SecTEE-plain and
OP-TEE achieve similar performance on average (SecTEE-plain
is 1.06 times slower than OP-TEE). The results demonstrate that
most performance overhead is caused by the memory protection
mechanism.

6.4 Enclave Performance Evaluation
To evaluate SecTEE’s performance impact on enclaves, we build
the following three security enclaves and run them on the four
systems.
• Random TA: generate random numbers for applications in the
normal world.

• Data Protection TA: use AES to encrypt provided data and return
the ciphertext to the normal world.

• HMAC-based One Time Password (HOTP) TA: receive a shared
key from the normal world and compute HMAC-based OTPs.

We evaluate both the entire execution time and the service
runtime of enclaves (Figure 12). The entire execution time includes
all the time of loading an enclave into SecTEE, allocating resources
for it, executing enclave services, and destroying the enclave. The
service runtime only includes the time of running enclave services
(TA commands).

For the entire execution time of secure enclaves, SecTEE-plain is
4.4 times slower than OP-TEE on average, and SecTEE is 43.7 times
slower than OP-TEE on average. So the results demonstrate that
most performance overhead comes from the memory protection
mechanism. As SecTEE is 1.12 times slower than Pager, the trusted
computing features (not including memory protection) of SecTEE
only introduce 12% overhead on average.

6.5 Side-channel Defense Evaluation
To demonstrate the effectiveness of SecTEE’s protection against
memory access based side-channel attacks, we perform the public
cache attacks [77] (based on the libflush library of ARMageddon
[68]) against the OpenSSL AES implementation on OP-TEE and
SecTEE respectively.

6.5.1 Experiment Preparation. We port the libflush library and
attack tools to SecTEE. We extract the source code of the T-table
based AES implementation of OpenSSL, and port it to SecTEE as
an AES static TA. We leverage the cycle count register (PMCCNTR)
of the performance monitoring unit (PMU) to measure the time of
memory access. The cache hit and miss histograms (Figure 13) of
normal DRAM (N-DRAM), secure DRAM (S-DRAM), and secure
OCM (S-OCM) show that cache hits and cache misses are clearly
distinguishable in both the normal world and the secure world (the

Session 8B: TEE I CCS ’19, November 11–15, 2019, London, United Kingdom

1734

2 5 6 B 5 1 2 B 1 K B 2 K B 4 K B 1 6 K B 5 1 2 K B 1 M B
0

5

1 0

1 5

2 0

2 5

3 0

3 5

Pe
rfo

rm
an

ce
 (K

B/S
)

B e n c h m a r k 1 0 0 1 (W r i t e)
2 5 6 B 5 1 2 B 1 K B 2 K B 4 K B 1 6 K B 5 1 2 K B 1 M B

0
2 0
4 0
6 0
8 0

1 0 0
1 2 0
1 4 0
1 6 0
1 8 0

Pe
rfo

rm
an

ce
 (K

B/S
)

B e n c h m a r k 1 0 0 2 (R e a d)
2 5 6 B 5 1 2 B 1 K B 2 K B 4 K B 1 6 K B 5 1 2 K B 1 M B

0

5

1 0

1 5

2 0

2 5

3 0

Pe
rfo

rm
an

ce
 (K

B/S
)

B e n c h m a r k 1 0 0 3 (R e - w r i t e)

 O P - T E E P a g e r S e c T E E - p l a i n S e c T E E

Figure 9: Xtest Trusted Storage Benchmarks

B e n c h m a r k 2 0 0 1 B e n c h m a r k 2 0 0 2 B e n c h m a r k 2 0 1 1 B e n c h m a r k 2 0 1 2
0 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0
1 . 2
1 . 4
1 . 6
1 . 8
2 . 04

6
8

1 0
1 2
1 4
1 6
1 8

(A E S C B C)(A E S E C B)(S H A 2 5 6)

Pe
rfo

rm
an

ce
 (M

B/S
)

 O P - T E E
 P a g e r
 S e c T E E - p l a i n
 S e c T E E

(S H A 1)

Figure 10: Xtest Crypto Benchmarks

0
5 0 01 0 0 0

1 5 0 0
2 0 0 02 5 0 0
3 0 0 0
3 5 0 04 0 0 0
4 5 0 0

2 0 0 0 0
4 0 0 0 0
6 0 0 0 0
8 0 0 0 0

1 0 0 0 0 0
1 2 0 0 0 0
1 4 0 0 0 0
1 6 0 0 0 0
1 8 0 0 0 0
2 0 0 0 0 0

s h a
r e d

 m e m o r y

& m a n a
g e m

e n t

K e y d
e r i v

a t i o
n

S e c u
r e s

t o r a
g e

G PS t o r a
g e

S h a r
e d m

e m o r y

C r y p t
o r e

l a t e
d

S o c k
e t r e

l a t e
d

O S r e l a
t e d

Tim
e(m

s)

 O P - T E E P a g e r S e c T E E - p l a i n S e c T E E

Figure 11: Xtest Test of OP-TEE’s Features

cache hit histogram of the secure DRAM overlaps that of the secure
OCM). The results illustrate an interesting phenomenon: cache hits
of the secure memory (about 55 CPU cycles) take much less time
than cache hits of the normal memory (about 160 CPU cycles).

6.5.2 Evaluating Attacks from the Normal World. We first perform
the cache attacks against AES, and find that the methods provided

R a n d o m D a t a P r o t e c t i o n H O T P
05

1 01 52 02 53 03 54 04 55 05 56 06 57 07 58 08 5
2 0 0

4 0 0

6 0 0

8 0 0

1 0 0 0

Pe
rfo

rm
an

ce
 (m

s)

E n t i r e E x e c u t i o n T i m e o f E n c l a v e s
R a n d o m D a t a P r o t e c t i o n H O T P

0 . 0
0 . 5
1 . 0
1 . 5
2 . 0
2 . 5

2 0
4 0
6 0
8 0

1 0 0
1 2 0
1 4 0
1 6 0

Pe
rfo

rm
an

ce
 (m

s)

S e r v i c e R u n t i m e o f E n c l a v e s

 O P - T E E P a g e r S e c T E E - p l a i n S e c T E E

Figure 12: Performance of Security Enclaves

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 00

1

2

3

4

5

Nu

mb
er

of
ac

ce
sse

s

M e a s u r e d a c c e s s t i m e i n C P U c y c l e s

 H i t (N - D R A M) H i t (S - D R A M) H i t (S - O C M)
 M i s s (N - D R A M) M i s s (S - D R A M) M i s s (S - O C M)· 1 0 4

Figure 13: Histograms of cache hits and cache misses in the
normal world and the secure world (the X-Axis represents
the latency of a memory access in CPU cycles)

by the libflush library, such as Prime+Probe and Eviction+Probe,
do not provide high enough resolution to recover the AES key in
the secure world. So we perform Prime+Probe to check whether
the normal world can detect memory accesses in the secure
world, i.e., prime before switching to the secure world and probe
after switching back to the normal world. Figure 14 shows the

Session 8B: TEE I CCS ’19, November 11–15, 2019, London, United Kingdom

1735

Prime+Probe histograms for cache hits and cache misses. On OP-
TEE, we observe a higher execution time if the secure world accesses
a congruent memory address (addresses that map to the same cache
set are considered congruent), while on SecTEE, the execution
time is the same no matter whether the secure world accesses a
congruent memory address or not. So SecTEE prevents attackers in
the normal world from learning the access patterns of the secure
world.

3 0 0 0 4 0 0 0 5 0 0 0 6 0 0 0 7 0 0 0 8 0 0 0 9 0 0 00

2 0 0

4 0 0

6 0 0

8 0 0

Nu
mb

er
of

ac
ce

sse
s

E x e c u t i o n t i m e i n C P U c y c l e s

 M e m o r y a c c e s s i n O P - T E E M e m o r y a c c e s s i n S e c T E E
 N o m e m o r y a c c e s s i n O P - T E E N o m e m o r y a c c e s s i n S e c T E E

Figure 14: Histograms of Prime+Probe timings on OP-TEE
and SecTEE (the X-Axis represents the execution time of the
Probe operation of libflush)

6.5.3 Evaluating Attacks from the Secure World. We implement the
T-table based implementation of AES as a victim static TA, and use
the attack tools [77] to implement an attacker static TA which can
invoke the AES TA. Since the cache attack requires the victim and
the attacker to share AES T-tables, we put the T-tables on a shared
memory page. Our experiment shows that the attacker TA can
recover the 128-bit AES key after 256,000 encryptions on OP-TEE,
while it cannot recover any byte of the key on SecTEE. Figure 15
illustrates the candidate scores of the first byte of the last round key
on OP-TEE and SecTEE respectively: the correct value of the first
byte of the last round key is 0x98=152. The attacker TA correctly
guesses the last round key of AES on OP-TEE, while it cannot guess
the key on SecTEE. Especially, Figure 15 shows that the attacker
TA learns no information about the memory access patterns of the
AES TA: all candidates get almost the same score (1 or 0).

0 1 6 3 2 4 8 6 4 8 0 9 6 1 1 2 1 2 8 1 4 4 1 6 0 1 7 6 1 9 2 2 0 8 2 2 4 2 4 0 2 5 6
0

2 0 0
4 0 0
6 0 0
8 0 0

1 0 0 0 O P - T E E
S e c T E E

Sc
ore

C a n d i d a t e

Figure 15: Candidate Scores of the 1st byte of the last round
key on OP-TEE and SecTEE

7 RELATEDWORK
7.1 Security Applications of TrustZone
This section introduces the security applications of ARMTrustZone,
including TEE virtualization, mobile OS protection and monitoring,
and security services for mobile devices.

TEE Virtualization. ARM TrustZone itself does not support
virtualization, preventing its application on server markets. vTZ
[45] addresses this problem by creating secure VMs as guest
TEEs for guest VMs and leveraging TrustZone and the hypervisor
to enforce strong isolation between the guest TEEs. TEEv [64]
designs a TEE virtualization architecture for ARMTrustZone, which
supports multiple TEE OSes running concurrently in the secure
world.

Mobile OS Protection and Monitoring. TZ-RKP [5] provides
real-time protection of the mobile OS by removing critical system
control instructions from the mobile OS kernel and simulating these
instructions in TEE. TruZ-Droid [118] incorporates the generic
TrustZone support in Android so that allows Android applications
leveraging TrustZone to protect users’ secrets and interaction
information without installing app-specific TAs. Sprobes [28]
presents an introspectionmechanism in the TEE to detect mobile OS
kernel rootkits. TrustShadow [36] and CryptMe [11] protect mobile
applications from physical attacks using a lightweight runtime
system in the TEE. TrustDump [102] develops amemory acquisition
mechanism in the TEE to perform memory dump and malware
analysis of the mobile OS. TrustICE [103] enables execution of
security-sensitive code in isolated environments in the normal
world without increasing the TCB of TEE.

Security Services for Mobile Devices. TLR [89] provides a
small runtime engine interpreting .NET managed code in the
TEE and enables mobile applications to implement security use
cases using high-level languages like C#. AdAttester [62] is a
verifiable mobile advertisement framework which guarantees that
the advertisement is displayed intact and timely. TrustOTP [101]
proposes a secure one-time password solution achieving both the
flexibility of software-based solutions and the security of hardware-
based solutions. fTPM [85] presents the design and implementation
of a TPM 2.0 chip in TEE, and it has been used in millions of mobile
devices. VButton [63] verifies the authenticity of sensitive user
operations to prevent malicious mobile apps and rootkits from
forging legitimate user inputs.

7.2 Secure Enclave Architectures
Secure enclave architectures have been an active field of research
over the past ten years, most of them are implemented by extending
security mechanisms to microprocessors, and some of them require
a small security kernel. AEGIS [100] provides secure execution
environments and fundamental trusted computing features for
security-sensitive code. OASIS [81] offers an isolated execution
environment with basic trusted computing features (attestation
and data binding) on minimally modified commodity CPUs. One
disadvantage of OASIS is that its execution environments are
limited by the cache size. Bastion [12] is a hardware-software
security architecture for security-critical tasks. It extends a memory
authentication mechanism to the microprocessor to provide basic
protection against both software and physical attacks. Intel SGX is

Session 8B: TEE I CCS ’19, November 11–15, 2019, London, United Kingdom

1736

the most popular secure enclave architecture. Although it achieves
high levels of software and physical security, it is vulnerable to a
variety of software side-channel attacks [9, 14, 32, 41, 73, 110, 114].
Iso-X [20] is a hardware-software co-design that provides isolated
compartments with the remote attestation mechanism.

Flicker [72] is a trusted computing architecture based on the
Late Launch technology [1, 48] and does not need to modify the
CPU. The TrustVisor [71] system overcomes Flicker’s performance
disadvantage by using a software-based “micro-TPM”, executing at
high speed on the platform’s primary CPU, to provide basic trusted
computing primitives. Sancus [79] presents a trusted computing
architecture for low-end systems, which provides rich trusted
computing primitives withminimal (hardware) TCB, such as remote
attestation, strong integrity, and authenticity guarantees.

Sanctum [17], Keystone [60], Komodo [22], and Sanctuary [8]
are modern secure enclave architectures proposed recently, which
aim to provide the same or higher security features as Intel
SGX. Sanctum [17] offers the same software security and trusted
computing features as SGX for the RISC-V CPU architecture. It does
not prevent physical attacks, but adds protection against software
side-channel attacks. After Sanctum, the Keystone project [60] is
proposed, whose goal is to make an open end-to-end framework for
secure enclaves on the RISC-V architecture. Komodo [22] presents
an approach to secure enclave architecture in formally verified
software. Based on TrustZone, Sanctuary [8] provides SGX-like
user-space enclaves without requiring any hardware modifications
and does not increase the TCB of the TEE system, but it does
not consider recently raised threats such as physical attacks and
memory access based side-channel attacks.

7.3 The Page Coloring Technique
Jin et al. [53] present a two-dimension page coloring mechanism
which can improve both on-chip miss rate and cache access latency.
Tam et al. [104] implement a software page coloring mechanism
in the OS which allows for partitioning of the shared L2 cache. Shi
et al. [92] protect crypto keys in virtualized clouds by proposing
a dynamic cache coloring mechanism. StealthMem [55] presents
a system-level protection mechanism against cache side channel
attacks in the cloud. Godfrey et al [31] design and implement two
defenses against the sequential and parallel types of cache-based
side-channel attacks respectively for cloud systems. COLORIS [117]
implements an efficient page re-coloring framework in production
systems, such as Linux.

8 CONCLUSION
In this paper, we present a software-based secure enclave archi-
tecture, SecTEE, for the ARM architecture. SecTEE leverages the
TrustZone isolation mechanism and the SoC-bound execution
environment technology to provide protection against software and
physical attacks and offers necessary trusted computing features
required by secure enclaves. SecTEE also provides protection
against memory access based side-channel attacks by modifying the
kernel’s memory management service to avoid cache conflicts of
enclaves and locking the working enclave pages into the cache,
showing that the design of moving the enclave management
functionality such as memory management and enclave scheduling

to a dedicated secure OS is an efficient way to resist memory access
based side-channel attacks. We implement a prototype system on a
TrustZone-enabled platform, but SecTEE can be applied to other
CPU architectures with isolation mechanisms, such as the RISC-
V architecture with TEE extensions. Although our prototype is
based on OP-TEE, SecTEE is not limited to it and can be directly
applied to other TEE systems by re-implementing the SoC-bound
execution environment and applying the mechanisms of resistance
to side-channel attacks and trusted computing primitives to them.
Our evaluation results show that the trusted computing features of
SecTEE introduce acceptable performance overhead on the runtime
of security-critical code and most performance overhead comes
from the memory protection mechanism.

ACKNOWLEDGEMENT
We would like to thank our anonymous reviewers for their
valuable comments. This research was supported by the National
Natural Science Foundation of China (61802375, 61602325, 61872343,
61602455, U1636216), the National Key R & D Program of China
(2018YFB0904900, 2018YFB0904903).

REFERENCES
[1] AMD64 Virtualization. Secure Virtual Machine Architecture Reference Manual.

AMD Publication, 33047, 2005.
[2] ARM. Security Technology - Building a Secure System using Trustzone

Technology. ARM Technical White Paper, 2009.
[3] S. Arnautov, B. Trach, F. Gregor, T. Knauth, A. Martin, C. Priebe, J. Lind,

D.Muthukumaran, D. O’keeffe,M. Stillwell, M. L. Stillwell, D. Goltzsche, D. Eyers,
R. Kapitza, P. Pietzuch, and C. Fetzer. SCONE: Secure Linux Containers with
Intel SGX. In 12th USENIX Symposium on Operating Systems Design and
Implementation, OSDI’16, pages 689–703. USENIX Association, 2016.

[4] P.-L. Aublin, F. Kelbert, D. O’Keeffe, D. Muthukumaran, C. Priebe, J. Lind,
R. Krahn, C. Fetzer, D. Eyers, and P. Pietzuch. TaLoS: Secure and Transparent
TLS Termination inside SGX Enclaves. Imperial College London, Tech. Rep, 5,
2017.

[5] A. M. Azab, P. Ning, J. Shah, Q. Chen, R. Bhutkar, G. Ganesh, J. Ma, and
W. Shen. Hypervision Across Worlds: Real-time Kernel Protection from the
ARM TrustZone Secure World. In 21st ACM SIGSAC Conference on Computer
and Communications Security, CCS’14, pages 90–102. ACM, 2014.

[6] R. Boivie and P. Williams. SecureBlue++: CPU Support for Secure Execution.
Technical report, 2012.

[7] B. Bond, C. Hawblitzel, M. Kapritsos, K. R. M. Leino, J. R. Lorch, B. Parno, A. Rane,
S. Setty, and L. Thompson. Vale: Verifying High-Performance Cryptographic
Assembly Code. In 26th USENIX Security Symposium, USENIX Security 17, pages
917–934. USENIX Association, 2017.

[8] F. Brasser, D. Gens, P. Jauernig, A.-R. Sadeghi, and E. Stapf. SANCTUARY:
ARMing TrustZone with User-space Enclaves. In 26th Network and Distributed
System Security Symposium, NDSS 2019, 2019.

[9] F. Brasser, U. Müller, A. Dmitrienko, K. Kostiainen, S. Capkun, and A.-R. Sadeghi.
Software Grand Exposure: SGX Cache Attacks Are Practical. In 11th USENIX
Workshop on Offensive Technologies. USENIX Association, 2017.

[10] S. Brenner, C. Wulf, D. Goltzsche, N. Weichbrodt, M. Lorenz, C. Fetzer,
P. Pietzuch, and R. Kapitza. SecureKeeper: Confidential ZooKeeper using Intel
SGX. In 17th International Middleware Conference, pages 14:1–14:13. ACM, 2016.

[11] C. Cao, L. Guan, N. Zhang, N. Gao, J. Lin, B. Luo, P. Liu, J. Xiang, and W. Lou.
CryptMe: Data Leakage Prevention for Unmodified Programs on ARM Devices.
In International Symposium on Research in Attacks, Intrusions, and Defenses,
RAID 2018, pages 380–400. Springer, 2018.

[12] D. Champagne and R. B. Lee. Scalable Architectural Support for Trusted
Software. In 16th IEEE International Symposium on High-Performance Computer
Architecture, pages 1–12. IEEE, 2010.

[13] G. Chen, S. Chen, Y. Xiao, Y. Zhang, Z. Lin, and T. Lai. SgxPectre Attacks: Leaking
Enclave Secrets via Speculative Execution. In 4th IEEE European Symposium on
Security and Privacy, pages 142–157. IEEE, 2019.

[14] S. Chen, X. Zhang, M. K. Reiter, and Y. Zhang. Detecting Privileged Side-Channel
Attacks in Shielded Execution with Déjá Vu. In 12th ACM on Asia Conference
on Computer and Communications Security, pages 7–18. ACM, 2017.

[15] P. Colp, J. Zhang, J. Gleeson, S. Suneja, E. De Lara, H. Raj, S. Saroiu, and
A. Wolman. Protecting Data on Smartphones and Tablets from Memory Attacks.

Session 8B: TEE I CCS ’19, November 11–15, 2019, London, United Kingdom

1737

In 20th International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS’15, pages 177–189. ACM, 2015.

[16] V. Costan and S. Devadas. Intel SGX Explained. IACR Cryptology ePrint Archive,
2016/086, 2016.

[17] V. Costan, I. Lebedev, and S. Devadas. Sanctum: Minimal Hardware Extensions
for Strong Software Isolation. In 25th USENIX Security Symposium, USENIX
Security 16, pages 857–874. USENIX Association, 2016.

[18] Y. Ding, R. Duan, L. Li, Y. Cheng, Y. Zhang, T. Chen, T. Wei, and H. Wang.
POSTER: Rust SGX SDK: Towards Memory Safety in Intel SGX Enclave. In 24th
ACM SIGSAC Conference on Computer and Communications Security, CCS’17,
pages 2491–2493. ACM, 2017.

[19] L. Duflot, Y.-A. Perez, G. Valadon, and O. Levillain. Can You Still Trust Your
Network Card. CanSecWest/core10, pages 24–26, 2010.

[20] D. Evtyushkin, J. Elwell, M. Ozsoy, D. Ponomarev, N. A. Ghazaleh, and R. Riley.
Iso-X: A Flexible Architecture for Hardware-Managed Isolated Execution.
In Proceedings of the 47th Annual IEEE/ACM International Symposium on
Microarchitecture, MICRO-47, pages 190–202. IEEE Computer Society, 2014.

[21] D. Evtyushkin, R. Riley, N. Abu-Ghazaleh, and D. Ponomarev. BranchScope: A
New Side-Channel Attack on Directional Branch Predictor. In 23rd International
Conference on Architectural Support for Programming Languages and Operating
Systems, ASPLOS’18, pages 693–707. ACM, 2018.

[22] A. Ferraiuolo, A. Baumann, C. Hawblitzel, and B. Parno. Komodo: Using
Verification to Disentangle Secure-Enclave Hardware from Software. In 26th
Symposium on Operating Systems Principles, SOSP’17, pages 287–305. ACM, 2017.

[23] B. Fisch, D. Vinayagamurthy, D. Boneh, and S. Gorbunov. IRON: Functional
Encryption using Intel SGX. In 24th ACM SIGSAC Conference on Computer and
Communications Security, CCS’17, pages 765–782. ACM, 2017.

[24] Y. Fu, E. Bauman, R. Quinonez, and Z. Lin. SGX-LAPD: Thwarting Controlled
Side Channel Attacks via Enclave Verifiable Page Faults. In 20th International
Symposium on Research in Attacks, Intrusions, and Defenses, RAID 2017, pages
357–380. Springer, 2017.

[25] FuturePlus System. DDR2 800 Bus Analysis Probe. http://www.futureplus.com/
download/datasheet/fs2334_ds.pdf, 2006.

[26] B. Garmany and T. Müller. PRIME: Private RSA Infrastructure for Memory-
less Encryption. In 29th Annual Computer Security Applications Conference,
ACSAC’13, pages 149–158. ACM, 2013.

[27] Q. Ge, Y. Yarom, and G. Heiser. No Security Without Time Protection: We Need
a New Hardware-Software Contract. In 9th Asia-Pacific Workshop on Systems,
pages 1:1–1:9. ACM, 2018.

[28] X. Ge, H. Vijayakumar, and T. Jaeger. Sprobes: Enforcing Kernel Code Integrity
on the TrustZone Architecture. arXiv preprint arXiv:1410.7747, 2014.

[29] Global Platform Device Technology. TEE client API specification version 1.0.
http://globalplatform.org, 2010.

[30] GlobalPlatform. GlobalPlatform Device Technology: TEE System Architecture.
Technical report, GPD_SPE_009, 2017.

[31] M. M. Godfrey and M. Zulkernine. Preventing Cache-Based Side-Channel
Attacks in a Cloud Environment. IEEE Transactions on Cloud Computing,
2(4):395–408, 2014.

[32] J. Götzfried, M. Eckert, S. Schinzel, and T. Müller. Cache Attacks on Intel SGX.
In 10th European Workshop on Systems Security, pages 2:1–2:6. ACM, 2017.

[33] B. Gras, K. Razavi, H. Bos, and C. Giuffrida. Translation Leak-aside Buffer:
Defeating Cache Side-channel Protections with TLB Attacks. In 27th USENIX
Security Symposium, USENIX Security 18, pages 955–972. USENIX Association,
2018.

[34] D. Gruss, C. Maurice, K. Wagner, and S. Mangard. Flush+ Flush: A Fast and
Stealthy Cache Attack. In International Conference on Detection of Intrusions
and Malware, and Vulnerability Assessment, pages 279–299. Springer, 2016.

[35] D. Gruss, R. Spreitzer, and S. Mangard. Cache Template Attacks: Automating
Attacks on Inclusive Last-level Caches. In 24th USENIX Security Symposium,
USENIX Security 15, pages 897–912. USENIX Association, 2015.

[36] L. Guan, C. Cao, P. Liu, X. Xing, X. Ge, S. Zhang, M. Yu, and T. Jaeger. Building
a Trustworthy Execution Environment to Defeat Exploits from both Cyber
Space and Physical Space for ARM. IEEE Transactions on Dependable and Secure
Computing, 16(3):438–453, 2018.

[37] L. Guan, J. Lin, B. Luo, and J. Jing. Copker: Computing with Private Keys without
RAM. In 21st Network and Distributed System Security Symposium, NDSS 2014,
pages 23–26, 2014.

[38] L. Guan, J. Lin, B. Luo, J. Jing, and J. Wang. Protecting Private Keys against
Memory Disclosure Attacks using Hardware Transactional Memory. In 36th
IEEE Symposium on Security and Privacy, S&P 2015, pages 3–19. IEEE, 2015.

[39] S. Gueron. A Memory Encryption Engine Suitable for General Purpose
Processors. IACR Cryptology ePrint Archive, 2016/204, 2016.

[40] D. Gullasch, E. Bangerter, and S. Krenn. Cache games–Bringing access-based
cache attacks on AES to practice. In 30th IEEE Symposium on Security and
Privacy, S&P 2011, pages 490–505. IEEE, 2011.

[41] M. Hähnel,W. Cui, andM. Peinado. High Resolution Side Channels for Untrusted
Operating Systems. In 2017 USENIX Annual Technical Conference, USENIX ATC
17, pages 299–312. USENIX Association, 2017.

[42] J. A. Halderman, S. D. Schoen, N. Heninger, W. Clarkson, W. Paul, J. A.
Calandrino, A. J. Feldman, J. Appelbaum, and E. W. Felten. Lest We Remember:
Cold Boot Attacks on Encryption Keys. Communications of the ACM, 52(5):91–98,
2009.

[43] M. Henson and S. Taylor. Beyond Full Disk Encryption: Protection on Security-
Enhanced Commodity Processors. In 11th International Conference on Applied
Cryptography and Network Security, pages 307–321. Springer, 2013.

[44] G. Hotz. PS3 Glitch Hack. http://www.eurasia.nu/wiki/index.php/PS3_Glitch_
Hack, 2010.

[45] Z. Hua, J. Gu, Y. Xia, H. Chen, B. Zang, and H. Guan. vTZ: Virtualizing ARM
TrustZone. In 26th USENIX Security Symposium, USENIX Security 17, pages
541–556. USENIX Association, 2017.

[46] A. Huang. Keeping Secrets in Hardware: The Microsoft XboxTM Case Study. In
4th International Workshop on Cryptographic Hardware and Embedded Systems,
CHES 2002, pages 213–227. Springer, 2002.

[47] M. S. Inci, B. Gülmezoglu, G. I. Apecechea, T. Eisenbarth, and B. Sunar. Seriously,
get off my cloud! Cross-VM RSA Key Recovery in a Public Cloud. IACR
Cryptology ePrint Archive, 2015/898, 2015.

[48] Intel Corporation. LaGrande Technology Preliminary Architecture Specification.
Document No. 315168 002, 2006.

[49] G. Irazoqui, T. Eisenbarth, and B. Sunar. S$A: A shared cache attack that works
across cores and defies VM sandboxing–and its application to AES. In 36th IEEE
Symposium on Security and Privacy, S&P 2015, pages 591–604. IEEE, 2015.

[50] G. Irazoqui, T. Eisenbarth, and B. Sunar. Cross Processor Cache Attacks. In
11th ACM on Asia conference on computer and communications security, pages
353–364. ACM, 2016.

[51] G. Irazoqui, M. S. Inci, T. Eisenbarth, and B. Sunar. Wait a Minute! A fast,
Cross-VM Attack on AES. In 17th International Workshop on Recent Advances in
Intrusion Detection, RAID 2014, pages 299–319. Springer, 2014.

[52] D. Ji, Q. Zhang, S. Zhao, Z. Shi, and Y. Guan. MicroTEE: Designing TEE OS
Based on the Microkernel Architecture. In 18th IEEE International Conference on
Trust, Security and Privacy in Computing and Communications, TrustCom 2019.
IEEE, 2019.

[53] L. Jin and S. Cho. Better than the Two: Exceeding Private and Shared Caches
via Two-Dimensional Page Coloring. In 1st Workshop on Chip Multiprocessor
Memory Systems and Interconnects, 2007.

[54] V. Karande, E. Bauman, Z. Lin, and L. Khan. SGX-Log: Securing System Logs
With SGX. In 12th ACM on Asia Conference on Computer and Communications
Security, pages 19–30. ACM, 2017.

[55] T. Kim, M. Peinado, and G. Mainar-Ruiz. STEALTHMEM: System-Level
Protection Against Cache-Based Side Channel Attacks in the Cloud. In 21st
USENIX Security Symposium, USENIX Security 12, pages 189–204. USENIX
Association, 2012.

[56] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin, D. Elkaduwe,
K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell, H. Tuch, and S. Winwood.
seL4: Formal verification of an OS kernel. In 22nd ACM Symposium on Operating
Systems Principles, SOSP’09, pages 207–220. ACM, 2009.

[57] H. Krawczyk. SIGMA: The ‘SIGn-and-MAc’ Approach to Authenticated Diffie-
Hellman and its Use in the IKE Protocols. In 23rd Annual International Cryptology
Conference, CRYPTO 2003, pages 400–425. Springer, 2003.

[58] K. A. Küçük, A. Paverd, A. Martin, N. Asokan, A. Simpson, and R. Ankele.
Exploring the Use of Intel SGX for Secure Many-Party Applications. In the 1st
Workshop on System Software for Trusted Execution, pages 5:1–5:6. ACM, 2016.

[59] M. G. Kuhn. Cipher Instruction Search Attack on the Bus-encryption Security
Microcontroller DS5002FP. IEEE Transactions on Computers, 47(10):1153–1157,
1998.

[60] D. Lee, D. Kohlbrenner, K. Cheang, C. Rasmussen, K. Laeufer, I. Fang, A. Khosla,
C.-C. Tsai, S. Seshia, D. Song, and K. Asanovic. Keystone Enclave: An Open-
Source Secure Enclave for RISC-V. https://keystone-enclave.org/, 2018.

[61] S. Lee, M. Shih, P. Gera, T. Kim, H. Kim, and M. Peinado. Inferring Fine-grained
Control Flow Inside SGX Enclaves with Branch Shadowing. In 26th USENIX
Security Symposium, USENIX Security 17, pages 557–574. USENIX Association,
2017.

[62] W. Li, H. Li, H. Chen, and Y. Xia. AdAttester: Secure Online Mobile
Advertisement Attestation Using TrustZone. In 13th Annual International
Conference on Mobile Systems, Applications, and Services, MobiSys’15, pages
75–88. ACM, 2015.

[63] W. Li, S. Luo, Z. Sun, Y. Xia, L. Lu, H. Chen, B. Zang, and H. Guan. VButton:
Practical Attestation of User-driven Operations in Mobile Apps. In 16th
Annual International Conference on Mobile Systems, Applications, and Services,
MobiSys’18, pages 28–40. ACM, 2018.

[64] W. Li, Y. Xia, L. Lu, H. Chen, and B. Zang. TEEv: Virtualizing Trusted Execution
Environments on Mobile Platforms. In 15th ACM SIGPLAN/SIGOPS International
Conference on Virtual Execution Environments, VEE’19, pages 2–16. ACM, 2019.

[65] Linaro. OP-TEE: Open Portable Trusted Execution Environment. https://www.
op-tee.org, 2014.

Session 8B: TEE I CCS ’19, November 11–15, 2019, London, United Kingdom

1738

http://www.futureplus.com/download/datasheet/fs2334_ds.pdf
http://www.futureplus.com/download/datasheet/fs2334_ds.pdf
http://globalplatform.org
http://www.eurasia.nu/wiki/index.php/PS3_Glitch_Hack
http://www.eurasia.nu/wiki/index.php/PS3_Glitch_Hack
https://keystone-enclave.org/
https://www.op-tee.org
https://www.op-tee.org

[66] Linaro. OP-TEE Pager. https://github.com/OP-TEE/optee_os/blob/master/
documentation/optee_design.md, 2015.

[67] Linaro. OP-TEE Xtest Framework. https://github.com/OP-TEE/optee_test, 2016.
[68] M. Lipp, D. Gruss, R. Spreitzer, C. Maurice, and S. Mangard. ARMageddon:

Cache attacks on mobile devices. In 25th USENIX Security Symposium, USENIX
Security 16, pages 549–564. USENIX Association, 2016.

[69] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee. Last-Level Cache Side-Channel
Attacks are Practical. In 36th IEEE Symposium on Security and Privacy, S&P 2015,
pages 605–622. IEEE, 2015.

[70] P. Maene, J. Götzfried, R. De Clercq, T. Müller, F. Freiling, and I. Verbauwhede.
Hardware-Based Trusted Computing Architectures for Isolation and Attestation.
IEEE Transactions on Computers, 67(3):361–374, 2018.

[71] J. M. McCune, Y. Li, N. Qu, Z. Zhou, A. Datta, V. Gligor, and A. Perrig. TrustVisor:
Efficient TCB Reduction and Attestation. In 31th IEEE Symposium on Security
and Privacy, S&P 2010, pages 143–158. IEEE, 2010.

[72] J. M. McCune, B. J. Parno, A. Perrig, M. K. Reiter, and H. Isozaki. Flicker: An
Execution Infrastructure for TCB Minimization. In ACM SIGOPS Operating
Systems Review, volume 42, pages 315–328. ACM, 2008.

[73] A. Moghimi, G. Irazoqui, and T. Eisenbarth. CacheZoom: How SGX Amplifies
the Power of Cache Attacks. In 19th International Conference on Cryptographic
Hardware and Embedded Systems, CHES 2017, pages 69–90. Springer, 2017.

[74] T. Müller, A. Dewald, and F. C. Freiling. AESSE: A Cold-boot Resistant
Implementation of AES. In 3rd European Workshop on System Security, pages
42–47. ACM, 2010.

[75] T. Müller, F. C. Freiling, and A. Dewald. TRESOR Runs Encryption Securely
Outside RAM. In 20th USENIX Security Symposium, USENIX Security 11,
volume 17. USENIX Association, 2011.

[76] T. Müller and M. Spreitzenbarth. Frost: Forensic Recovery of Scrambled
Telephones. In 12th International Conference on Applied Cryptography and
Network Security, pages 373–388. Springer, 2013.

[77] E. Nascimento. Cache Side-channel Attack AES.
https://github.com/enascimento/cache_side-channel_attack_aes, 2017.

[78] NCC Group. TPM Genie: Interposer Attacks Against the Trusted Platform
Module Serial Bus. https://www.nccgroup.trust/us/our-research/tpm-genie-
interposer-attacks-against-the-trusted-platform-module-serial-bus, 2018.

[79] J. Noorman, P. Agten, W. Daniels, R. Strackx, A. Van Herrewege, C. Huygens,
B. Preneel, I. Verbauwhede, and F. Piessens. Sancus: Low-cost Trustworthy
Extensible Networked Devices with a Zero-software Trusted Computing Base.
In 22th USENIX Security Symposium, USENIX Security 13, pages 479–498. USENIX
Association, 2013.

[80] D. A. Osvik, A. Shamir, and E. Tromer. Cache Attacks and Countermeasures:
the Case of AES. In Cryptographers’ Track at the RSA Conference, pages 1–20.
Springer, 2006.

[81] E. Owusu, J. Guajardo, J. McCune, J. Newsome, A. Perrig, and A. Vasudevan.
OASIS: On Achieving a Sanctuary for Integrity and Secrecy on Untrusted
Platforms. In 20th ACM SIGSAC Conference on Computer and Communications
Security, CCS’13, pages 13–24. ACM, 2013.

[82] P. Papadopoulos, G. Vasiliadis, G. Christou, E. Markatos, and S. Ioannidis. No
Sugar but All the Taste! Memory Encryption Without Architectural Support.
In 22nd European Symposium on Research in Computer Security, ESORICS 2017,
pages 362–380. Springer, 2017.

[83] J. Protzenko, B. Parno, A. Fromherz, C. Hawblitzel, M. Polubelova, K. Bhargavan,
B. Beurdouche, J. Choi, A. Delignat-Lavaud, C. Fournet, T. Ramananandro,
A. Rastogi, N. Swamy, C. Wintersteiger, and S. Zanella-Beguelin. EverCrypt: A
Fast, Verified, Cross-Platform Cryptographic Provider. Technical report, IACR
Cryptology ePrint Archive, 2019/757, 2019.

[84] H. Raj, R. Nathuji, A. Singh, and P. England. Resource Management for Isolation
Enhanced Cloud Services. In 1st ACM workshop on Cloud computing security,
pages 77–84. ACM, 2009.

[85] H. Raj, S. Saroiu, A. Wolman, R. Aigner, J. Cox, P. England, C. Fenner,
K. Kinshumann, J. Löser, D. Mattoon, M. Nyström, D. Robinson, R. Spiger,
S. Thom, and D. Wooten. fTPM: A Software-Only Implementation of a TPM
Chip. In 25th USENIX Security Symposium, USENIX Security 16, pages 841–856.
USENIX Association, 2016.

[86] P. Rauzy and S. Guilley. A Formal Proof of Countermeasures against Fault
Injection Attacks on CRT-RSA. Journal of Cryptographic Engineering, 4(3):173–
185, 2014.

[87] Rick Boivie, Eric Hall, Charanjit Jutla, Mimi Zohar. Secure Blue - Secure CPU
Technology. https://researcher.watson.ibm.com/researcher/view_page.php?id=
6904, 2006.

[88] Samsung. Whitepaper: Samsung KNOX Security Solution. 2017.
[89] N. Santos, H. Raj, S. Saroiu, and A. Wolman. Using ARM TrustZone to Build

a Trusted Language Runtime for Mobile Applications. In 19th International
Conference on Architectural Support for Programming Languages and Operating
Systems, ASPLOS’14, pages 67–80. ACM, 2014.

[90] F. Schuster, M. Costa, C. Fournet, C. Gkantsidis, M. Peinado, G. Mainar-Ruiz,
and M. Russinovich. VC3: Trustworthy Data Analytics in the Cloud Using SGX.
In 36th IEEE Symposium on Security and Privacy, S&P 2015, pages 38–54. IEEE,

2015.
[91] M. Schwarz, S. Weiser, D. Gruss, C. Maurice, and S. Mangard. Malware Guard

Extension: Using SGX to Conceal Cache Attacks. In 14th International Conference
on Detection of Intrusions and Malware, and Vulnerability Assessment, pages 3–24.
Springer, 2017.

[92] J. Shi, X. Song, H. Chen, and B. Zang. Limiting Cache-based Side-channel in
Multi-tenant Cloud using Dynamic Page Coloring. In IEEE/IFIP 41st International
Conference on Dependable Systems and Networks Workshops, DSN-W 2011, pages
194–199. IEEE, 2011.

[93] M.-W. Shih, M. Kumar, T. Kim, and A. Gavrilovska. S-NFV: Securing NFV States
by Using SGX. In 2016 ACM International Workshop on Security in Software
Defined Networks & Network Function Virtualization, pages 45–48. ACM, 2016.

[94] S. Shinde, Z. L. Chua, V. Narayanan, and P. Saxena. Preventing Page Faults
from Telling Your Secrets. In 11th ACM on Asia Conference on Computer and
Communications Security, pages 317–328. ACM, 2016.

[95] S. Shinde, D. Le Tien, S. Tople, and P. Saxena. Panoply: Low-TCB Linux
Applications With SGX Enclaves. In 24th Network and Distributed System
Security Symposium, NDSS 2017, 2017.

[96] P. Simmons. Security Through Amnesia: A Software-Based Solution to the Cold
Boot Attack on Disk Encryption. In 27th Annual Computer Security Applications
Conference, pages 73–82. ACM, 2011.

[97] Solutions EPN. Analysis Tools for DDR1, DDR2, DDR3, Embedded DDR and
Fully Buffered DIMM Modules, 2014.

[98] R. Spreitzer and T. Plos. Cache-Access Pattern Attack on Disaligned AES T-Table.
In 4th International Workshop on Constructive Side-Channel Analysis and Secure
Design, pages 200–214. Springer, 2013.

[99] R. Spreitzer and T. Plos. On the Applicability of Time-Driven Cache Attacks on
Mobile Devices. In 7th International Conference on Network and System Security,
pages 656–662. Springer, 2013.

[100] G. E. Suh, D. Clarke, B. Gassend, M. Van Dijk, and S. Devadas. AEGIS:
Architecture for Tamper-Evident and Tamper-Resistant Processing. In ACM
International Conference on Supercomputing 25th Anniversary Volume, pages
357–368. ACM, 2014.

[101] H. Sun, K. Sun, Y. Wang, and J. Jing. TrustOTP: Transforming Smartphones
into Secure One-Time Password Tokens. In 22nd ACM SIGSAC Conference on
Computer and Communications Security, CCS’15, pages 976–988. ACM, 2015.

[102] H. Sun, K. Sun, Y. Wang, J. Jing, and S. Jajodia. TrustDump: Reliable Memory
Acquisition on Smartphones. In 19th European Symposium on Research in
Computer Security, ESORICS 2014, pages 202–218. Springer, 2014.

[103] H. Sun, K. Sun, Y. Wang, J. Jing, and H. Wang. TrustICE: Hardware-Assisted
Isolated Computing Environments on Mobile Devices. In 45th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks, DSN 2015, pages
367–378. IEEE, 2015.

[104] D. Tam, R. Azimi, L. Soares, and M. Stumm. Managing Shared L2 Caches on
Multicore Systems in Software. In 2nd Workshop on the Interaction between
Operating Systems and Computer Architecture, pages 26–33, 2007.

[105] A. Triulzi. The Jedi Packet Trick Takes over the Deathstar. Central Area
Networking and Security , CANSEC 2010, 2010.

[106] C.-C. Tsai, D. E. Porter, and M. Vij. Graphene-SGX: A Practical Library OS for
Unmodified Applications on SGX. In 2017 USENIX Annual Technical Conference,
USENIX ATC 17, pages 645–658. USENIX Association, 2017.

[107] J. Van Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci, F. Piessens,
M. Silberstein, T. F. Wenisch, Y. Yarom, and R. Strackx. Foreshadow: Extracting
the Keys to the Intel SGX Kingdom with Transient Out-of-Order Execution. In
27th USENIX Security Symposium, USENIX Security 18, pages 991–1008. USENIX
Association, 2018.

[108] J. Van Bulck, F. Piessens, and R. Strackx. SGX-Step: A Practical Attack
Framework for Precise Enclave Execution Control. In 2nd Workshop on System
Software for Trusted Execution, pages 4:1–4:6. ACM, 2017.

[109] G. Vasiliadis, E. Athanasopoulos, M. Polychronakis, and S. Ioannidis. Pixelvault:
Using GPUs for Securing Cryptographic Operations. In 21st ACM SIGSAC
Conference on Computer and Communications Security, CCS’14, pages 1131–1142.
ACM, 2014.

[110] W. Wang, G. Chen, X. Pan, Y. Zhang, X. Wang, V. Bindschaedler, H. Tang, and
C. A. Gunter. Leaky Cauldron on the Dark Land: Understanding Memory Side-
Channel Hazards in SGX. In 24th ACM SIGSAC Conference on Computer and
Communications Security, CCS’17, pages 2421–2434. ACM, 2017.

[111] S. Weiser and M. Werner. SGXIO: Generic Trusted I/O Path for Intel SGX. In 7th
ACM Conference on Data and Application Security and Privacy, pages 261–268.
ACM, 2017.

[112] M. Weiß, B. Heinz, and F. Stumpf. A Cache Timing Attack on AES in
Virtualization Environments. In 16th International Conference on Financial
Cryptography and Data Security, pages 314–328. Springer, 2012.

[113] M. Weiß, B. Weggenmann, M. August, and G. Sigl. On Cache Timing Attacks
Considering Multi-core Aspects in Virtualized Embedded Systems. In 6th
International Conference on Trusted Systems, pages 151–167. Springer, 2014.

[114] Y. Xu, W. Cui, and M. Peinado. Controlled-Channel Attacks: Deterministic Side
Channels for Untrusted Operating Systems. In 36th IEEE Symposium on Security

Session 8B: TEE I CCS ’19, November 11–15, 2019, London, United Kingdom

1739

https://github.com/OP-TEE/optee_os/blob/master/documentation/optee_design.md
https://github.com/OP-TEE/optee_os/blob/master/documentation/optee_design.md
https://github.com/OP-TEE/optee_test
https://researcher.watson.ibm.com/researcher/view_page.php?id=6904
https://researcher.watson.ibm.com/researcher/view_page.php?id=6904

and Privacy, S&P 2015, pages 640–656. IEEE, 2015.
[115] M. Yan, R. Sprabery, B. Gopireddy, C. Fletcher, R. Campbell, and J. Torrellas.

Attack Directories, Not Caches: Side-Channel Attacks in a Non-Inclusive World.
In 40th IEEE Symposium on Security and Privacy, S&P 2019. IEEE, 2019.

[116] Y. Yarom and K. Falkner. FLUSH+RELOAD: A High Resolution, Low Noise,
L3 Cache Side-channel Attack. In 23rd USENIX Security Symposium, USENIX
Security 14, pages 719–732. USENIX Association, 2014.

[117] Y. Ye, R. West, Z. Cheng, and Y. Li. COLORIS: A Dynamic Cache Partitioning
System using Page Coloring. In 23rd International Conference on Parallel
Architecture and Compilation Techniques, PACT’14, pages 381–392. IEEE, 2014.

[118] K. Ying, A. Ahlawat, B. Alsharifi, Y. Jiang, P. Thavai, and W. Du. TruZ-
Droid: Integrating TrustZone with Mobile Operating System. In 16th
Annual International Conference on Mobile Systems, Applications, and Services,
MobiSys’18, pages 14–27. ACM, 2018.

[119] M. Zhang, Q. Zhang, S. Zhao, Z. Shi, and Y. Guan. SoftME: A Software-
Based Memory Protection Approach for TEE System to Resist Physical Attacks.
Security and Communication Networks, 2019, 2019.

[120] N. Zhang, H. Sun, K. Sun, W. Lou, and Y. T. Hou. CacheKit: Evading Memory
Introspection Using Cache Incoherence. In 1st IEEE European Symposium on
Security and Privacy, EuroS&P 2016, pages 337–352. IEEE, 2016.

[121] N. Zhang, K. Sun, W. Lou, and Y. T. Hou. Case: Cache-Assisted Secure Execution
on ARM Processors. In 37th IEEE Symposium on Security and Privacy, S&P 2016,
pages 72–90. IEEE, 2016.

[122] N. Zhang, K. Sun, D. Shands, W. Lou, and Y. T. Hou. TruSense: Information
Leakage from TrustZone. In IEEE Conference on Computer Communications,
IEEE INFOCOM 2018, pages 1097–1105. IEEE, 2018.

[123] S. Zhao, Q. Zhang, Y. Qin, W. Feng, and D. Feng. Minimal Kernel: An Operating
System Architecture for TEE to Resist Board Level Physical Attacks. In 22nd
International Symposium on Research in Attacks, Intrusions and Defenses, RAID
2019, pages 105–120. USENIX Association, 2019.

[124] J.-K. Zinzindohoué, K. Bhargavan, J. Protzenko, and B. Beurdouche. HACL*: A
Verified Modern Cryptographic Library. In 24th ACM SIGSAC Conference on
Computer and Communications Security, CCS’17, pages 1789–1806. ACM, 2017.

Session 8B: TEE I CCS ’19, November 11–15, 2019, London, United Kingdom

1740

	Abstract
	1 Introduction
	2 Background
	2.1 Intel SGX
	2.2 ARM Cache Architecture
	2.3 SoC-bound Execution Environments and the OP-TEE Pager System

	3 Threat Model and Hardware Requirements
	3.1 Threat Model
	3.2 Hardware Requirements

	4 Design Overview
	4.1 Design Goals
	4.2 Overview of SecTEE
	4.3 Lessons from Other Architectures

	5 SecTEE Architecture
	5.1 Memory Protection
	5.2 Side-channel Resistance
	5.3 Key Hierarchy
	5.4 Enclave Identification and Measurement
	5.5 Remote Attestation
	5.6 Data Sealing/Unsealing
	5.7 Secrets Provisioning
	5.8 Enclave Management
	5.9 Other Security Considerations

	6 Implementation and Evaluation
	6.1 TCB Size
	6.2 Overhead of Trusted Computing Features
	6.3 Xtest Performance Evaluation
	6.4 Enclave Performance Evaluation
	6.5 Side-channel Defense Evaluation

	7 Related Work
	7.1 Security Applications of TrustZone
	7.2 Secure Enclave Architectures
	7.3 The Page Coloring Technique

	8 Conclusion
	References

