
This paper is included in the Proceedings of the
28th USENIX Security Symposium.

August 14–16, 2019 • Santa Clara, CA, USA

978-1-939133-06-9

Open access to the Proceedings of the
28th USENIX Security Symposium

is sponsored by USENIX.

EnFuzz: Ensemble Fuzzing with Seed
Synchronization among Diverse Fuzzers

Yuanliang Chen, Yu Jiang, Fuchen Ma, Jie Liang, Mingzhe Wang, and Chijin Zhou,
Tsinghua University; Xun Jiao, Villanova University; Zhuo Su, Tsinghua University

https://www.usenix.org/conference/usenixsecurity19/presentation/chen-yuanliang

EnFuzz: Ensemble Fuzzing with Seed Synchronization among Diverse Fuzzers

Yuanliang Chen1, Yu Jiang1∗, Fuchen Ma1, Jie Liang1, Mingzhe Wang1, Chijin Zhou1, Xun Jiao2, Zhuo Su1

1School of Software, Tsinghua University, KLISS
2Department of Electrical and Computer Engineering, Villanova University

Abstract
Fuzzing is widely used for vulnerability detection. There are
various kinds of fuzzers with different fuzzing strategies, and
most of them perform well on their targets. However, in in-
dustrial practice, it is found that the performance of those
well-designed fuzzing strategies is challenged by the com-
plexity and diversity of real-world applications. In this paper,
we systematically study an ensemble fuzzing approach. First,
we define the diversity of base fuzzers in three heuristics: di-
versity of coverage information granularity, diversity of input
generation strategy and diversity of seed selection and muta-
tion strategy. Based on those heuristics, we choose several of
the most recent base fuzzers that are as diverse as possible,
and propose a globally asynchronous and locally synchronous
(GALS) based seed synchronization mechanism to seamlessly
ensemble those base fuzzers and obtain better performance.
For evaluation, we implement EnFuzz based on several widely
used fuzzers such as QSYM and FairFuzz, and then we test
them on LAVA-M and Google’s fuzzing-test-suite, which
consists of 24 widely used real-world applications. This ex-
periment indicates that, under the same constraints for re-
sources, these base fuzzers perform differently on different
applications, while EnFuzz always outperforms other fuzzers
in terms of path coverage, branch coverage and bug discovery.
Furthermore, EnFuzz found 60 new vulnerabilities in several
well-fuzzed projects such as libpng and libjpeg, and 44 new
CVEs were assigned.

1 Introduction

Fuzzing is one of the most popular software testing tech-
niques for bug and vulnerability detection. There are many
fuzzers for academic and industrial usage. The key idea of
fuzzing is to generate plenty of inputs to execute the tar-
get application and monitor for any anomalies. While each
fuzzer develops its own specific fuzzing strategy to gener-
ate inputs, there are in general two main types of strategies.
One is a generation-based strategy which uses the specifi-
cation of input format, e.g. grammar, to generate complex
inputs. For example, IFuzzer [33] takes a context-free gram-
mar as specification to generate parse trees for code fragments.
Radamsa [22] reads sample files of valid data and generates in-
teresting different outputs from them. The other main strategy

is a mutation-based strategy. This approach generates new in-
puts by mutating the existing seeds (good inputs contributing
to improving the coverage). Recently, mutation-based fuzzers
are proposed to use coverage information of target programs
to further improve effectiveness for bug detection. For exam-
ple, libFuzzer [10] mutates seeds by utilizing the Sanitizer-
Coverage [11] instrumentation to track block coverage, while
AFL [39] mutates seeds by using static instrumentation to
track edge coverage.

Based on the above mentioned two fuzzers, researchers
have performed many optimizations. For example, AFLFast
[16] improves the fuzzing strategy of AFL by selecting seeds
that exercise low-frequency paths for additional mutations,
and FairFuzz [26] optimizes AFL’s mutation algorithm to
prioritize seeds that hit rare branches. AFLGo [15] assigns
more mutation times to the seeds closer to target locations.
QSYM [38] uses a practical concolic execution engine to
solve complex branches of AFL. All of these optimized
fuzzers outperform AFL on their target applications and have
already detected a large number of software bugs and security
vulnerabilities.

However, when we apply these optimized fuzzers to some
real-world applications, these fuzzing strategies are incon-
sistent in their performance, their effectiveness on different
applications varies accordingly. For example, in our evalu-
ation on 24 real-world applications, AFLFast and FairFuzz
perform better than AFL on 19 applications, while AFL per-
forms better on the other 5 applications. Compared with AFL,
libFuzzer performs better on 17 applications but worse on the
other 7 applications. For the parallel mode of fuzzing which is
widely-used in industry, AFLFast and FairFuzz only detected
73.5% and 88.2% of the unique bugs of AFL. These results
show that the performance of existing fuzzers is challenged
by the complexity and diversity of real-world applications.
For a given real-world application, we cannot evaluate which
fuzzer is better unless we spend significant time analyzing
them or running each of these fuzzers one by one. This would
waste a lot of human and computing resources [25]. This
indicates that many of the current fuzzing strategies have a
lack of robustness — the property of being strong and stable
consistently in constitution. For industrial practice, more ro-
bust fuzzing strategies are desired when applied across a large
number of different applications.

USENIX Association 28th USENIX Security Symposium 1967

In this paper, we systematically study the performance of
an ensemble fuzzing approach. First, we define the diver-
sity of base fuzzers focusing on three heuristics: diversity of
coverage information granularity, diversity of input genera-
tion strategy, as well as diversity of seed mutation and selec-
tion strategy. Then, we implement an ensemble architecture
with a global asynchronous and local synchronous(GALS)
based seed synchronization mechanism to integrate these base
fuzzers effectively. To enhance cooperation among differ-
ent base fuzzers, the mechanism synchronizes interesting
seeds(i.e., test cases covering new paths or triggering new
crashes) periodically to all fuzzers running on the same target
application. At the same time, it maintains a global coverage
map to help collect those interesting seeds asynchronously
from each base fuzzer.

For evaluation, we implement a prototype of EnFuzz, based
on several high-performance base fuzzers, including AFL,
AFLFast, FairFuzz, QSYM, libFuzzer and Radamsa. All
fuzzers are repeatedly tested on two widely used bench-
marks — LAVA-M and Google’s fuzzer-test-suite, following
the kernel rules of evaluating fuzzing guideline [25]. The av-
erage number of paths executed, branches covered and unique
crashes discovered are used as metrics. The results demon-
strate that, with the same resource usage, the base fuzzers per-
form differently on different applications, while EnFuzz con-
sistently and effectively improves the fuzzing performance.
For example, there are many cases where the original AFL
performs better on some real-world applications than the two
optimized fuzzers FairFuzz and AFLFast. In all cases, the
ensemble fuzzing always outperforms all other base fuzzers.

Specifically, on Google’s fuzzer-test-suite consisting of
real-world applications with a code base of 80K-220K
LOCs, compared with AFL, AFLFast, FairFuzz, QSYM, lib-
Fuzzer and Radamsa, EnFuzz discovers 76.4%, 140%, 100%,
81.8%, 66.7% and 93.5% more unique bugs, executes 42.4%,
61.2%, 45.8%, 66.4%, 29.5% and 44.2% more paths and cov-
ers 15.5%, 17.8%, 12.9%, 26.1%, 19.9% and 14.8% more
branches respectively. For the result on LAVA-M consisting
of applications with a code base of 2K-4K LOCs, it outper-
forms each base fuzzer as well. For further evaluation on more
widely used and several well-fuzzed open-source projects
such as Libpng and jpeg, EnFuzz finds 60 new real vulnera-
bilities, 44 of which are security-critical vulnerabilities and
registered as new CVEs. However, other base fuzzers only
detect 35 new vulnerabilities at most.

This paper makes the following main contributions:

1. While many earlier works have mentioned the possibility
of using ensemble fuzzing, we are among the first to
systematically investigate the practical ensemble fuzzing
strategies and the effectiveness of ensemble fuzzing of
various fuzzers. We evaluate the performance of typical
fuzzers through a detailed empirical study. We define the
diversity of base fuzzers and study the effects of diversity
on their performance.

2. We implement a concrete ensemble approach with seed
synchronization to improve the performance of existing
fuzzers. EnFuzz shows a more robust fuzzing practice

across diverse real world applications. The prototype1

is also scalable and open-source so as to integrate other
fuzzers.

3. We apply EnFuzz to fuzz several well-fuzzed projects
such as libpng and libjpeg from GitHub, and several
commercial products such as libiec61850 from Cisco.
Within 24 hours, 60 new security vulnerabilities were
found and 44 new CVEs were assigned, while other base
fuzzers only detected 35 new vulnerabilities at most.
EnFuzz has already been deployed in industrial practice,
and more new CVEs are being reported1.

The rest of this paper is organized as follows: Section 2 in-
troduces related work. Section 3 illustrates ensemble fuzzing
by a simple example. Section 4 elaborates ensemble fuzzing,
including the base fuzzer selection and ensemble architecture
design. Section 5 presents the implementation and evalua-
tion of EnFuzz. Section 6 discusses the potential threats of
EnFuzz, and we conclude in section 7. The appendix shows
some empirical evaluations and observations.

2 Related Work

Here below, we introduce the work related to generation-
based fuzzing, mutation-based fuzzing, fuzzing in practice
and the main differences between these projects. After that
we summarize the inspirations and introduce our work.

2.1 Generation-based Fuzzing
Generation-based fuzzing generates a massive number of test
cases according to the specification of input format, e.g. a
grammar. To fuzz the target applications that require inputs
in complex format, the specifications used are crucial. There
are many types of specifications. Input model and context-
free grammar are the two most common types. Model-based
fuzzers [1,20,34] follow a model of protocol. Hence, they are
able to find more complex bugs by creating complex inter-
actions with the target applications. Peach [20] is one of the
most popular model-based fuzzers with both generation and
mutation abilities. It develops two key models: the data model
determines the format of complex inputs and the state model
describes the concrete method for cooperating with fuzzing
targets. By integrating fuzzing with models of data and state,
Peach works effectively. Skyfire [34] first learns a context-
sensitive grammar model, and then it generates massive inputs
based on this model.

Some other popular fuzzers [21, 24, 31, 33, 37] generate
inputs based on context free grammar. P Godefroid [21] en-
hances the whitebox fuzzing of complex structured-input
applications by using symbolic execution, which directly
generates grammar-based constraints whose satisfiability is
examined using a custom grammar-based constraint solver.
Csmith [37] is designed for fuzzing C-compilers. It gener-
ates plenty of random C programs in the C99 standard as
the inputs. This tool can be used to generate C programs ex-
ploring a typical combination of C-language features while

1https://github.com/enfuzz/enfuzz

1968 28th USENIX Security Symposium USENIX Association

https://github.com/enfuzz/enfuzz

being free of undefined and unspecified behaviors. LAVA [31]
generates effective test suites for the Java virtual machine by
specifying production grammars. IFuzzer [33] first constructs
parse trees based on a language’s context-free grammar, then
it generates new code fragments according to these parse
trees. Radamsa [22] is a widely used generation-based fuzzer.
It works by reading sample files of valid data and generat-
ing interestingly different outputs from them. Radamsa is an
extreme "black-box" fuzzer, it needs no information about
the program nor the format of the data. One can pair it with
coverage analysis during testing to improve the quality of the
sample set during a continuous fuzzing test.

2.2 Mutation-based Fuzzing
Mutation-based fuzzers [2, 17, 23] mutate existing test cases
to generate new test cases without any input grammar or in-
put model specification. Traditional mutation-based fuzzers
such as zzuf [23] mutate the test cases by flipping random
bits with a predefined ratio. In contrast, the mutation ratio
of SYMFUZZ [17] is assigned dynamically. To detect bit
dependencies of the input, it leverages white-box symbolic
analysis on an execution trace, then it dynamically computes
an optimal mutation ratio according to these dependencies.
Furthermore, BFF [2] integrates machine learning with evolu-
tionary computation techniques to reassign the mutation ratio
dynamically.

Other popular AFL family tools [15, 16, 26, 39] apply var-
ious strategies to boost the fuzzing process. AFLFast [16]
regards the process of target application as a Markov chain. A
path-frequency based power schedule is responsible for com-
puting the times of random mutation for each seed. As with
AFLFast, AFLGo [15] also proposes a simulated annealing-
based power schedule, which helps fuzz the target code. Fair-
Fuzz [26] mainly focuses on the mutation algorithm. It only
mutates seeds that hit rare branches and it strives to ensure
that the mutant seeds hit the rarest one. (Wen Xu et.al.) [36]
propose several new primitives , speeding up AFL by 6.1 to
28.9 times. Unlike AFL family tools which track the hit count
of each edge, libFuzzer [10] and honggfuzz [5] utilize the
SanitizerCoverage instrumentation method provided by the
Clang compiler. To track block coverage, they track the hit
count of each block as a guide to mutate the seeds during
fuzzing. SlowFuzz [30] prioritizes seeds that use more com-
puter resources (e.g., CPU, memory and energy), increasing
the probability of triggering algorithmic complexity vulnera-
bilities. Furthermore, some fuzzers use concolic executors for
hybrid fuzzing. Both Driller [32] and QSYM use mutation-
based fuzzers to avoid path exploration of symbolic execu-
tion, while concolic execution is selectively used to drive
execution across the paths that are guarded by narrow-ranged
constraints.

2.3 Cluster and Parallel Fuzzing in Industry
Fuzzing has become a popular vulnerability discovery solu-
tion in industry [28] and has already found a large number
of dangerous bugs and security vulnerabilities across a wide
range of systems so far. For example, Google’s OSS-Fuzz [4]
platform has found more than 1000 bugs in 5 months with

thousands of virtual machines [9]. ClusterFuzz is the dis-
tributed fuzzing infrastructure behind OSS-Fuzz, and auto-
matically executes libFuzzer powered fuzzer tests on scale
[12, 13]. Initially built for fuzzing Chrome at scale, Cluster-
Fuzz integrates multiple distributed libFuzzer processes, and
performs effectively with corpus synchronization. Cluster-
Fuzz mainly runs multiple identical instances of libFuzzer
on distributed system for one target application. There is no
diversity between these fuzzing instances.

In industrial practice, many existing fuzzers also provide a
parallel mode, and they work well with some synchronization
mechisms. For example, each instance of AFL in parallel
mode will periodically re-scan the top-level sync directory
for any test cases found by other fuzzers [3, 7]. libFuzzer in
parallel will also use multiple fuzzing engines to exchange
the corpora [6]. These parallel mode can effectively improve
the performance of fuzzer. In fact, the parallel mode can be
seen as a special example of ensemble fuzzing which uses
multiple same base fuzzers. However, all these base fuzzers
have a lack of diversity when using the same fuzzing strategy.

2.3.1 Main Differences

Unlike the previous works, we are not proposing a new con-
crete generation-based or mutation-based fuzzing strategy.
Nor do we run multiple identical fuzzers with multiple cores
or machines. Instead, inspired by the seed synchronization
of ClusterFuzz and AFL in parallel mode, we systemati-
cally study the possibility of the ensemble fuzzing of diverse
fuzzers mentioned in the earlier works. Referred to the kernel
descriptions of the evaluating fuzzing guidelines [25], we em-
pirically evaluate most state-of-the-art fuzzers, and identify
some valuable results, especially for their performance varia-
tion across different real applications. To generate a stronger
ensemble fuzzer, we choose multiple base fuzzers that are as
diverse as possible based on three heuristics. We then imple-
ment an ensemble approach with global asynchronous and
local synchronous based seed synchronization.

3 Motivating Example

To investigate the effectiveness of ensemble fuzzing, we use a
simple example in Figure 1 which takes two strings as input,
and crashes when one of the two strings is “Magic Str” and
the other string is “Magic Num”.

Many existing fuzzing strategies tend to be designed with
certain preferences. Suppose that we have two different
fuzzers f uzzer1 and f uzzer2: f uzzer1 is good at solving the
"Magic Str" problem, so it is better for reaching targets T1
and T3, but fails to reach targets T2 and T4. f uzzer2 is good
at solving the "Magic Num" problem so it is better for reach-
ing targets T2 and T6, but fails to reach targets T1 and T5.
If we use these two fuzzers separately, we can only cover
one path and two branches. At the same time, if we use them
simultaneously and ensemble their final fuzzing results with-
out seed synchronization, we can cover two paths and four
branches. However, if we ensemble these two fuzzers with
some synchronization mechanisms throughout the fuzzing
process, then, once f uzzer1 reaches T1, it synchronizes the

USENIX Association 28th USENIX Security Symposium 1969

void crash(char* A, char* B){
if (A == "Magic Str"){ => T1

if (B == "Magic Num") {
bug(); => T4

}else{
normal(); => T3

}
}else if (A == "Magic Num"){ => T2

if (B == "Magic Str"){
bug(); => T5

}else{
normal(); => T6

}
}

}

T1 T2

T3 T4 T5 T6

Figure 1: Motivating example of ensemble fuzzing with seed
synchronization.

seed that can cover T1 to f uzzer2. As a result, then, with the
help of this synchronized seed, f uzzer2 can also reach T1,
and because of its ability to solve the "Magic Num" prob-
lem, f uzzer2 can further reach T4. Similarly, with the help
of the seed input synchronized by f uzzer2, f uzzer1 can also
further reach T2 and T5. Accordingly, all four paths and all
six branches can be covered through this ensemble approach.

Table 1: covered paths of each fuzzing option

Tool T1-
T3

T1-
T4

T2-
T5

T2-
T6

fuzzer1 X

fuzzer2 X

ensemble fuzzer1 and fuzzer2
without seed synchronization

X X

ensemble fuzzer1 and fuzzer2
with seed synchronization

X X X X

The ensemble approach in this motivating example works
based on the following two hypotheses: (1) f uzzer1 and
f uzzer2 expert in different domains; (2) the interesting seeds
can be synchronized to all base fuzzers in a timely way. To
satisfy the above hypotheses as much as possible, success-

ful ensemble fuzzers rely on two key points: (1) the first
is to select base fuzzers with great diversity (as yet to be
well-defined); (2) the second is a concrete synchronization
mechanism to enhance effective cooperation among those
base fuzzers.

4 Ensemble Fuzzing

For an ensemble fuzzing, we need to construct a set of base
fuzzers and seamlessly combine them to test the same tar-
get application together. The overview of this approach is
presented in Figure 2. When a target application is prepared
for fuzzing, we first choose several existing fuzzers as base
fuzzers. The existing fuzzing strategies of any single fuzzer
are usually designed with preferences. In real practice, these
preferences vary greatly across different applications. They
can be helpful in some applications, but may be less effec-
tive on other applications. Therefore, choosing base fuzzers
with more diversity can lead to better ensemble performance.
After the base fuzzer selection, we integrate fuzzers with the
globally asynchronous and locally synchronous based seed
synchronization mechanism so as to monitor the fuzzing sta-
tus of these base fuzzers and share interesting seeds among
them. Finally, we collect crash and coverage information and
feed this information into the fuzzing report.

Base Fuzzers Selection

...

Seed Synchronization Mechanism

Base
Fuzzer

Base
Fuzzer

Base
Fuzzer

Base
Fuzzer

Result

generate

Result Result Result

generate generate generate

monitor

monitor monitor monitor monitor

seed is inter
esting?

N

Seed synchronization

Y

integrate together

...

Final Fuzzing Report

Global Coverage De-duplicate and triage Statistical Results

Target
Application

1 2 3 k

k321

Figure 2: The overview of ensemble fuzzing consists of base
fuzzer selection and ensemble architecture design. The base
fuzzer selection contains the diversity heuristic definition,
and the architecture design includes the seed synchronization
mechanism as well as final fuzzing report.

1970 28th USENIX Security Symposium USENIX Association

4.1 Base Fuzzer Selection
The first step in ensemble fuzzing is to select a set of base
fuzzers. These fuzzers can be generation-based fuzzers, e.g.
Peach and Radamsa, or mutation-based fuzzers, e.g. libFuzzer
and AFL. We can randomly choose some base fuzzers, but
selecting base fuzzers with well-defined diversity improves
the performance of an ensemble fuzzer.

We classify the diversity of base fuzzers according to three
heuristics: seed mutation and selection strategy diversity,
coverage information granularity diversity, inputs generation
strategy diversity. The diversity heuristics are as follows:

1. Seed mutation and selection strategy based heuristic:
the diversity of base fuzzers can be determined by the
variability of seed mutation strategies and seed selection
strategies. For example, AFLFast selects seeds that exer-
cise low-frequency paths and mutates them more times,
FairFuzz strives to ensure that the mutant seeds hit the
rarest branches.

2. Coverage information granularity based heuristic: many
base fuzzers determine interesting inputs by tracking
different coverage information. Hence, the coverage in-
formation is critical, and different kinds of coverage
granularity tracked by fuzzers enhances diversity. For ex-
ample, libFuzzer guides seed mutation by tracking block
coverage while AFL tracks edge coverage.

3. Input generation strategy based heuristic: fuzzers with
different input generation strategies are suitable for dif-
ferent tasks. For example, generation-based fuzzers use
the specification of input format to generate test cases,
while the mutation-based fuzzers mutate initial seeds by
tracking code coverage. So the generation-based fuzzers
such as Radamsa perform better on complex format in-
puts and the mutation-based fuzzers such as AFL prefer
complex logic processing.

Based on these three basic heuristics, we should be able to
select a diverse set of base fuzzers with large diversity. It is
our intuition that the diversity between the fuzzers following
in two different heuristics is usually larger than the fuzzers
that follows in the same heuristic. So, the diversity among
the AFL family tools should be the least, while the diversity
between Radamsa and AFL, between Libfuzzer and AFL, and
between QSYM and AFL is should be greater. In this paper,
we select base fuzzers manually based on the above heuristics.
the base fuzzers will be dynamically selected according to the
real-time coverage information.

4.2 Ensemble Architecture Design
After choosing base fuzzers, we need to implement a suit-
able architecture to integrate them together. As presented
in Figure 2, inspired by the seed synchronization of AFL in
parallel mode, one core mechanism is designed — the glob-
ally asynchronous and locally synchronous (GALS) based
seed synchronization mechanism. The main idea is to identify
the interesting seeds (seeds that can cover new paths or new
branches or can detect new unique crashes) from different

base fuzzers asynchronously and share those interesting seeds
synchronously among all fuzzing processes.

monitor

...

... Base FuzzerBase Fuzzer

local seed queue

global seed pool

local seed queue local seed queue

global coverage map global crashes

Base Fuzzer
1 2 k

Figure 3: The data structure of global asynchronous and local
synchronous based seed synchronization mechanism.

ALGORITHM 1: Action of local base fuzzer
Input :Local seed pool of base fuzzer queue

1 repeat
2 foreach seed s of the queue do
3 s′ = Mutate(s);
4 Cover = Run(s’);
5 // if seeds s′ causes new crash or have new

// coverage, then store it in own seed pool and
// push it to the global seed pool asynchronously;

6 if Cover.causeCrash() then
7 crashes.push(s’);
8 queue.push(s′);
9 GlobalSeedPool.push(s′);

10 else if Cover.haveNewCoverage() then
11 queue.push(s′);
12 GlobalSeedPool.push(s′);
13 end
14 end
15 until timeout or abort-signal;

Output :Global crashing seeds crashes

This seed synchronization mechanism employs a global-
local style data structure as shown in Figure 3. The local seed
queue is maintained by each base fuzzer, while the global pool
is maintained by the monitor for sharing interesting seeds
among all base fuzzers. In ensemble fuzzing, the union of
these base fuzzers’ results is needed to identify interesting
seeds during the whole fuzzing process. Accordingly, the
global coverage map is designed, and any new paths or new
branches covered by the interesting seeds will be added into
this global map. This global map can not only help decide
which seeds to be synchronized, but also help de-duplicate
and triage the results. Furthermore, to output the final fuzzing
report after completing all fuzzing jobs, any interesting seeds
which contribute to triggering unique crashes will be stored
in the global crashes list.

First, let us take a look at the seed synchronization solution
of the base fuzzer, which mainly describes how base fuzzers

USENIX Association 28th USENIX Security Symposium 1971

contribute the interesting seeds asynchronously to the global
pool. As presented in lines 2-4 of algorithm 1, for each sin-
gle base fuzzer, it works with a local input seed queue and
runs a traditional continuous fuzzing loop. It has three main
steps: (1) Select input seeds from the queue, (2) mutate the
selected input seeds to generate new candidate seeds, (3) run
the target program with the candidate seeds, track the cover-
age and report vulnerabilities. Once the candidate seeds have
new coverage or cause unique crashes, they will be regarded
as interesting seeds and be pushed asynchronously into the
global seed pool, as presented in lines 6-12.

ALGORITHM 2: Action of global monitor sync

Input :Base fuzzers list BaseFuzzers[]
Initial seeds S
Synchronization period period

1 // set up each base fuzzers ;
2 foreach base fuzzer f of the BaseFuzzers[] do
3 f uzzer.setup();
4 end
5 // set up thread monitor for monitoring ;
6 monintor.setup();
7 GlobalCover.initial();
8 GlobalSeedPool.initial();
9 GlobalSeedPool.push(S);

10 repeat
11 foreach seed s of the GlobalSeedPool do
12 // Skip synchronized seeds ;
13 if s.isSync() == False then
14 foreach base fuzzer f of the BaseFuzzers[] do
15 Cover = f .run(s) ;
16 // update the global coverage ;
17 newCover =

(Cover∪GlobalCover)−GlobalCover ;
18 GlobalCover =Cover∪GlobalCover;
19 // synchronize the seed s to base fuzzer f ;
20 if Cover.causeCrash() and

!newCover.isEmpty() then
21 crashes.push(s);
22 f .queue.push(s);
23 else if !newCover.isEmpty() then
24 f .queue.push(s);
25 else
26 continue;
27 end
28 end
29 else
30 continue;
31 end
32 s.setSync(True);
33 end
34 // waiting until next seed synchronization ;
35 sleep(period);
36 until timeout or abort-signal;

Output :Crashing seeds crashes

Second, let us see the seed synchronization solution of the
monitor process, which mainly describes how the monitor
process synchronously dispatches the interesting seeds in the
global pool to the local queue of each base fuzzer. When all
base fuzzers are established, a thread named monitor will be
created for monitoring the execution status of these fuzzing

jobs, as in lines 2-6 of algorithm 2. It initializes the global
coverage information to record the global fuzzing status of
target applications by all the base fuzzer instances and then
creates the global seed pool with the initial seeds, as in lines
7-9 of algorithm 2. It then runs a continuous periodically syn-
chronizing loop — each base fuzzer will be synchronously
dispatched with the interesting seeds from the global seed
pool. Each base fuzzer will incorporate the seeds into its own
local seed queue, once the seeds are deemed to be interest-
ing seeds (seeds contribute to the coverage or crash and has
not been generated by the local fuzzer), as in line 15-24 . To
lower the overhead of seed synchronization, a thread monitor
is designed to work periodically. Due to this globally asyn-
chronous and locally synchronous based seed synchronization
mechanism, base fuzzers cooperate effectively with each other
as in the motivating example in Figure 1.

5 Evaluation

To present the effectiveness of ensemble fuzzing, we first
implement several prototypes of ensemble fuzzer based on
the state-of-the-art fuzzers. Then, we refer to some kernel
descriptions of evaluating fuzzing guideline [25]. We conduct
thorough evaluations repeatedly on LAVA-M and Google’s
fuzzer-test-suite, several well-fuzzed open-source projects
from GitHub, and several commercial products from compa-
nies. Finally, according to the results, we answer the following
three questions: (1) Can ensemble fuzzer perform better? (2)
How do different base fuzzers affect Enfuzz? (3) How does
Enfuzz perform on real-world applications

5.1 Ensemble Fuzzer Implementation
We implement ensemble fuzzing based on six state-of-the-art
fuzzers, including three edge-coverage guided mutation-based
fuzzers – AFL, AFLFast and FairFuzz, one block-coverage
guided mutation-based fuzzer – libFuzzer, one generation-
based fuzzer – Radamsa and one most recently hybrid fuzzer –
QSYM. These are chosen as the base fuzzers for the following
reasons (Note that EnFuzz is not limited to these six and
other fuzzers can also be easily integrated, such as honggfuzz,
ClusterFuzzer etc.):

• Easy integration. All the fuzzers are open-source and
have their core algorithms implemented precisely. It is
easy to integrate those existing fuzzers into our ensem-
ble architecture. We do not have to implement them on
our own, which eliminates any implementation errors or
deviations that might be introduced by us.

• Fair comparison. All the fuzzers perform very well and
are the latest and widely used fuzzers, as is seen by
their comparisons with each other in prior literature, for
example, QSYM outperforms similar fuzzers such as
Angora [18] and VUzzer. We can evaluate their perfor-
mance on real-world applications without modification.

• Diversity demonstration. All these fuzzers have differ-
ent fuzzing strategies and reflect the diversity among
correspondence with the three base diversity heuristics

1972 28th USENIX Security Symposium USENIX Association

Table 2: Diversity among these base fuzzers
Tool diversity compared with AFL

AFLFast Seed mutation and selection strategy based
rule: the times of random mutation for each
seed is computed by a Markov chain model.
The seed selection strategy is different.

FairFuzz Seed mutation and selection strategy based
rule: only mutates seeds which hit rare
branches and strives to ensure the mutant
seeds hit the rarest one. The seed mutation
strategy is different.

libFuzzer Coverage information granularity based rule:
libFuzzer mutates seeds by utilizing the San-
itizerCoverage instrumentation, which sup-
ports tracking block coverage; while AFL
uses static instrumentation with a bitmap to
track edge coverage. The coverage informa-
tion granularity is different.

Radamsa Input generation strategy based rule: Radamsa
is a widely used generation-based fuzzer
which generates different inputs sample files
of valid data. The input generation strategy is
different.

QSYM QSYM is a practical fast concolic execution
engine tailored for hybrid fuzzing. It makes
hybrid fuzzing scalable enough to test com-
plex, real-world applications.

mentioned in section 4.1: coverage information granu-
larity diversity, input generation strategy diversity, seed
mutation and selection strategy diversity. The concrete
diversity among these base fuzzers is listed in Table 2.

To demonstrate the performance of ensemble fuzzing and
the influence of diversity among base fuzzers, five prototypes
are developed. (1) EnFuzz-A, an ensemble fuzzer only based
on AFL, AFLFast and FairFuzz. (2) EnFuzz-Q, an ensemble
fuzzer based on AFL, AFLFast, FairFuzz and QSYM, a prac-
tical concolic execution engine is included. (3) EnFuzz-L,
an ensemble fuzzer based on AFL, AFLFast, FairFuzz and
libFuzzer, a block-coverage guided fuzzer is included. (4)
EnFuzz, an ensemble fuzzer based on AFL, AFLFast, lib-
Fuzzer and Radamsa, a generation-based fuzzer is further
added .(5) EnFuzz−, with the ensemble of same base fuzzers
(AFL, AFLFast and FairFuzz), but without the seed synchro-
nization, to demonstrate the effectiveness of the global asyn-
chronous and local synchronous based seed synchronization
mechanism. During implementation of the proposed ensem-
ble mechanism, we address the following challenges:

1) Standard Interface Encapsulating The interfaces of
these fuzzers are different. For example, AFL family
tools use the function main, but libFuzzer use a function
LLVMFuzzerTestOneInput. Therefore, it is hard to ensemble
them together. We design a standard interface to encapsulate
the complexity of different fuzzing tools. This standard inter-
face takes seeds from the file system, and writes the results
back to the file system. All base fuzzers receive inputs and

produce results through this standard interface, through which
different base fuzzers can be ensembled easily.

2) libFuzzer Continuously Fuzzing The fuzzing engine of
libFuzzer will be shut down when it finds a crash, while other
tools continue fuzzing until manually closed. It is unfair to
compare libFuzzer with other tools when the fuzzing time
is different. The persistent mode of AFL is a good solution
to this problem. Once AFL sets up, the fuzzer parent will
fork and execve a new process to fuzz the target. When the
target process crashes, the parent will collect the crash and
resume the target, then the process simply loops back to the
start. Inspired by the AFL persistent mode, we set up a thread
named Parent to monitor the state of libFuzzer. Once it shuts
down, Parent will resume the libFuzzer.

3) Bugs De-duplicating and Triaging We develop a tool
for crash analysis. We compile all the target applications with
AddressSanitizer, and test them with the crash samples. When
the target applications crash, the coredump file, which consists
of the recorded state of the working memory will be saved.
Our tool first loads coredump files, then gathers the frames
of each crash; finally, it identifies two crashes as identical if
and only if the top frame is identical to the other frame. The
method above is prone to underestimating bugs. For example,
two occurrences of heap overflow may crash at the cleanup
function at exit. However, the target program is instrumented
with AddressSanitizer. As the program terminates immedi-
ately when memory safety problems occur, the top frame is
always relevant to the real bug. In practice, the original dupli-
cate unique crashes have been drastically de-duplicated to a
humanly check-able number of unique bugs, usually without
duplication. Even though there are some extreme cases that
different top frames for one bug, the result can be further
refined by manual crash analysis.

4) Seeds effectively Synchronizing The implementation of
the seed synchronization mechanism: all base fuzzers have
implemented the communication logic following the standard
interface. Each base fuzzer will put interesting seeds into its
own local seed pool, and the monitor thread sync will period-
ically make each single base fuzzer pull synchronized seeds
from the global seed pool through a communication channel.
This communication channel is implemented based on file
system. A shorter period consumes too many resources, which
leads to a decrease in fuzzing performance. A longer period
will make seed synchronizing untimely, which also affects the
performance. After multiple attempts with different values,
it is found that the synchronization interval affects the per-
formance at the beginning of fuzzing, while little impact was
observed in the long term. The interval of 120s is identified
with the fastest convergence.

5.2 Data and Environment Setup
Firstly, we evaluate ensemble fuzzing on LAVA-M [19],
which consistis of four buggy programs, file, base64, md5sum
and who. LAVA-M is a test suite that injects hard-to-find bugs
in Linux utilities to evaluate bug-finding techniques. Thus the
test is adequate for demonstrating the effectiveness of ensem-
ble fuzzing. Furthermore, to reveal the practical performance
of ensemble fuzzing, we also evaluate our work based on
fuzzer-test-suite [8], a widely used benchmark from Google.

USENIX Association 28th USENIX Security Symposium 1973

The test suite consists of popular open-source real-world ap-
plications. This benchmark is chosen to avoid the potential
bias of the cases presented in literature, and for its great di-
versity, which helps demonstrate the performance variation
of existing base fuzzers.

We refer to the kernel criteria and settings of evaluation
from the fuzzing guidelines [25], and integrate the three
widely used metrics from previous literature studies to com-
pare the results on these real-world applications more fairly,
including the number of paths, branches and unique bugs. To
get unique bugs, we use crash’s stack backtraces to dedupli-
cate unique crashes, as mentioned in the previous subsection.
The initial seeds for all experiments are the same. We use the
test cases originally included in their applications or empty
seed if such initial seeds do not exist.

The experiment on fuzzer-test-suite is conducted ten times
in a 64-bit machine with 36 cores (Intel(R) Xeon(R) CPU E5-
2630 v3 @ 2.40GHz), 128GB of main memory, and Ubuntu
16.04 as the host OS with SMT enabled. Each binary is hard-
ened by AddressSanitizer [11] to detect latent bugs. First, we
run each base fuzzer for 24 hours with one CPU core in single
mode. Next, since EnFuzz-L, EnFuzz and EnFuzz-Q need at
least four CPU cores to ensemble these four base fuzzers, we
also run each base fuzzer in parallel mode for 24 hours with
four CPU cores. In particular, EnFuzz-A and EnFuzz− only
ensembles three types of base fuzzers (AFL, AFLFast and
FairFuzz). To use the same resources, we set up two AFL
instances, one AFLFast instance and one FairFuzz instance.
This experimental setup ensures that the computing resources
usage of each ensemble fuzzer is the same as any base fuzzers
running in parallel mode. While most metrics converged to
similar values during multithreaded fuzzing. The variation of
those statistical test results is small (between -5% 5%), we
just use the averages in this paper.

5.3 Preliminary Evaluation on LAVA-M
We first evaluate ensemble fuzzing on LAVA-M, which has
been used for testing other systems such as Angora, T-Fuzz
and QSYM, and QSYM shows the best performance. We run
EnFuzz-Q (which ensembles AFL, AFLFast, FairFuzz and
QSYM) on the LAVA-M dataset. To demonstrate its effective-
ness, we also run each base fuzzer using the same resources
— four instances of AFL in parallel mode, four instances of
AFLFast in parallel mode, four instances of FairFuzz in paral-
lel mode, QSYM with four CPU cores used in parallel mode
(two instances of concolic execution engine and two instances
of AFL). To identify unique bugs, we used built-in bug identi-
fiers provided by the LAVA project. The results are presented
in Table 3, 4 and 5, which show the number of paths executed,
branches covered and unique bugs detected by AFL, AFLFast,
FairFuzz, QSYM, EnFuzz-Q.

From Tables 3, 4 and 5, we found that AFL, AFLFast
and FairFuzz perform worse due to the complexity of their
branches. The practical concolic execution engine helps
QSYM solve complex branches and find significantly more
bugs. The base code of the four applications in LAVA-M
are small (2K-4K LOCs) and concolic execution could work
well on them. However, real projects have code bases that
easily reach 10k LOCs. Concolic execution might perform

worse or even get hanged, as presented in the latter subsec-
tions. Furthermore, when we ensemble AFL, AFLFast, Fair-
Fuzz and QSYM together with the GALS based seed syn-
chronization mechanism – EnFuzz-Q always performs the
best in both coverage and bug detection. In total, compared
with AFL, AFLFast, FairFuzz and QYSM, EnFuzz-Q exe-
cutes 44%, 45%, 43% and 7.7% more paths, covers 195%,
215%, 194% and 5.8% more branches, and detectes 8314%,
19533%, 12989% and 0.68% more unique bugs respectively.
From these preliminary statistics, we can determine that the
performance of fuzzers can be improved by our ensemble
approach.

Table 3: Number of paths covered by AFL, AFLFast, FairFuzz,
QSYM and EnFuzz-Q on LAVA-M.

Project AFL AFLFast FairFuzz QSYM EnFuzz-Q

base64 1078 1065 1080 1643 1794
md5sum 589 589 601 1062 1198
who 4599 4585 4593 5621 5986
uniq 476 453 471 693 731
total 6742 6692 6745 9019 9709

Table 4: Number of branches covered by AFL, AFLFast, Fair-
Fuzz, QSYM and EnFuzz-Q on LAVA-M.

Project AFL AFLFast FairFuzz QSYM EnFuzz-Q

base64 388 358 389 960 993
md5sum 230 208 241 2591 2786
who 813 791 811 1776 1869
uniq 1085 992 1079 1673 1761
total 2516 2349 2520 7000 7409

Table 5: Number of bugs found by AFL, AFLFast, FairFuzz,
QSYM and EnFuzz-Q on LAVA-M.

Project AFL AFLFast FairFuzz QSYM EnFuzz-Q

base64 1 1 0 41 42
md5sum 0 0 1 57 57
who 2 0 1 1047 1053
uniq 11 5 7 25 26
total 14 6 9 1170 1178

5.4 Evaluation on Google’s fuzzer-test-suite
While LAVA-M is widely used, Google’s fuzzer-test-suite is
more practical with many more code lines and containing real-
world bugs. To reveal the effectiveness of ensemble fuzzing,
we run EnFuzz (which only ensembles AFL, AFLFast, Lib-
Fuzzer and Radamsa) on all of the 24 real-world applications
of Google’s fuzzer-test-suite for 24 hours 10 times. As a com-
parison, we also run each base fuzzer in parallel mode with
four CPU cores used. To identify unique bugs, we used stack
backtraces to deduplicate crashes. The results are presented

1974 28th USENIX Security Symposium USENIX Association

in Tables 6, 7 and 8, which shows the average number of
paths executed, branches covered and unique bugs detected
by AFL, AFLFast, FairFuzz, LibFuzzer, Radamsa, QSYM
and EnFuzz respectively.

Table 6: Average number of paths covered by each tool on
Google’s fuzzer-test-suite for ten times.

Project AFL AFLFast FairFuzz LibFuzzer Radamsa QSYM EnFuzz

boringssl 3286 2816 3393 5525 3430 2973 7136
c-ares 146 116 146 191 146 132 253
guetzli 3248 2550 1818 3844 3342 2981 4508
lcms 1682 1393 1491 1121 1416 1552 2433
libarchive 12842 10111 12594 22597 12953 11984 31778
libssh 110 102 110 362 110 149 377
libxml2 14888 13804 14498 28797 17360 13172 35983
openssl-1.0.1 3992 3501 3914 2298 3719 3880 4552
openssl-1.0.2 4090 3425 3956 2304 3328 3243 4991
openssl-1.1.0 4051 3992 4052 2638 3593 4012 4801
pcre2 79581 66894 71671 59616 78347 60348 85386
proj4 342 302 322 509 341 323 709
re2 12093 10863 12085 15682 12182 10492 17155
woff2 23 16 20 447 22 24 1324
freetype2 19086 18401 20655 25621 18609 17707 27812
harfbuzz 12398 11141 14381 16771 11021 12557 16894
json 1096 963 721 1081 1206 1184 1298
libjpeg 1805 1579 2482 1486 1632 1636 2638
libpng 582 568 587 586 547 606 781
llvm 8302 8640 9509 10169 8019 7040 10935
openthread 268 213 230 1429 266 365 1506
sqlite 298 322 294 580 413 300 636
vorbis 1484 1548 1593 1039 1381 1496 1699
wpantund 4914 5112 5691 4881 4891 4941 5823
Total 190607 168372 186213 209574 188274 163097 271408

Improvement – 11% ↓ 2% ↓ 9% ↑ 1% ↓ 14%↓ 42% ↑

The first six columns of Table 6 reveal the issue of the per-
formance variation in those base fuzzers, as they perform var-
iously on different applications. Comparing AFL family tools,
AFL performs better than the other two optimized fuzzers on
14 applications. Compared with AFL, libFuzzer performs bet-
ter on 15 applications, but worse on 9 applications. Radamsa
performs better on 8 applications, but also worse on 16 ap-
plications. QSYM performs better on 9 applications, but also
worse on 15 applications. Table 7 and Table 8 show similar
results on branch coverage and bugs.

From Table 6, it is interesting to see that compared with
those optimized fuzzers based on AFL (AFLFast, FairFuzz,
Radamsa and QSYM), original AFL performs the best on
14 applications in parallel mode with 4 CPU cores. For the
total number of paths executed, AFL performs the best and
AFLFast performs the worst in parallel mode. While in single
mode with one CPU core used, the situation is exactly the
opposite, and the original AFL only performs the best on 5
applications, as presented in Table 14 of the appendix.

The reason for performance degradation of these optimiza-
tions in parallel mode is that their studies lack the consider-
ation for synchronizing the additional guiding information.
Take AFLFast for example, it models coverage-based fuzzing
as Markov Chain, and the times of random mutation for each
seed will be computed by a power scheduler. This strategy
works well in single mode, but it would fail in parallel mode
because the statistics of each fuzzer’s scheduler are limited
in current thread. Our evaluation demonstrates that many op-
timized fuzzing strategies could be useful in single mode,
but fail in the parallel mode even if this is the mode widely
used in industry practice. This experiment has been missing

by many prior literature studies. A potential solution for this
degradation is to synchronize the additional guiding informa-
tion in their implementation, similar to the work presented in
PAFL [27].
Table 7: Average number of branches covered by each tool on
n Google’s fuzzer-test-suite for ten times.

Project AFL AFLFast FairFuzz LibFuzzer Radamsa QSYM EnFuzz

boringssl 3834 3635 3894 3863 3880 3680 4108
c-ares 285 276 285 202 285 285 285
guetzli 3022 2723 1514 4016 3177 3011 3644
lcms 3985 3681 3642 3015 2857 3731 4169
libarchive 10580 9267 8646 8635 11415 9416 13949
libssh 614 614 614 573 614 636 614
libxml2 15204 14845 14298 13346 19865 14747 21899
openssl-1.0.1 4011 3967 3996 3715 4117 4032 4673
openssl-1.0.2 4079 4004 4021 3923 4074 3892 4216
openssl-1.1.0 9125 9075 9123 8712 9017 9058 9827
pcre2 50558 48004 49430 36539 51881 36208 53912
proj4 267 267 267 798 267 261 907
re2 17918 17069 17360 16001 17312 16323 19688
woff2 120 120 120 2785 120 121 3945
freetype2 53339 52404 56653 57325 52715 48547 58192
harfbuzz 38163 36313 43077 39712 37959 38194 44708
json 7048 6622 5138 6583 7231 7169 7339
libjpeg 12345 11350 15688 10342 12009 11468 17071
libpng 4135 4393 4110 4003 3961 4085 4696
llvm 55003 56619 58306 57021 54312 48008 62918
openthread 3109 2959 2989 5421 3102 3634 5579
sqlite 2850 2847 2838 3123 3012 2853 3216
vorbis 12136 13524 13053 10032 11234 12849 14318
wpantund 40667 40867 41404 39816 40317 40556 43217
Total 352397 345445 360466 339501 354733 322764 407090
Improvement – 1% ↓ 2% ↓ 3% ↑ 0.6% ↓ 8%↓ 16% ↑

Table 8: Average number of unique bugs found by each tool
on n Google’s fuzzer-test-suite for ten times.

Project AFL AFLFast FairFuzz LibFuzzer Radamsa QSYM EnFuzz

boringssl 0 0 0 1 0 0 1
c-ares 3 2 3 1 2 2 3
guetzli 0 0 0 1 0 0 1
lcms 1 1 1 2 1 1 2
libarchive 0 0 0 1 0 0 1
libssh 0 0 0 1 0 1 2
libxml2 1 1 1 3 2 1 3
openssl-1.0.1 3 2 3 2 2 3 4
openssl-1.0.2 5 4 4 1 5 5 6
openssl-1.1.0 5 5 5 3 4 5 6
pcre2 6 4 5 2 5 4 8
proj4 2 0 1 1 1 1 3
re2 1 0 1 1 0 1 2
woff2 1 0 0 2 1 1 1
freetype2 0 0 0 0 0 0 0
harfbuzz 0 0 1 1 0 0 1
json 2 1 0 1 3 2 3
libjpeg 0 0 0 0 0 0 0
libpng 0 0 0 0 0 0 0
llvm 1 1 2 2 1 1 2
openthread 0 0 0 4 0 0 4
sqlite 0 0 0 3 1 1 3
vorbis 3 4 3 3 3 4 4
wpantund 0 0 0 0 0 0 0

Total 34 25 30 37 31 33 60
Improvement – 26% ↓ 12% ↑ 6% ↓ 9% ↑ 3%↓ 76% ↑

From the fifth columns of Table 6 and Table 14, we find that
compared with Radamsa in single mode, the improvement
achieved by Radamsa is limited in parallel mode. There are
two main reasons: (1) Too many useless inputs generated by
Radamsa slow down the seed-sharing efficiency among all

USENIX Association 28th USENIX Security Symposium 1975

instances of AFL. This seed-sharing mechanism does not exist
in single mode. (2) Some interesting seeds can be created in
parallel mode and shared among all instances of AFL. These
seeds overlap with the inputs generated by Radamsa. So this
improvement is limited in parallel mode.

For the EnFuzz which integrates AFL, AFLFast, libFuzzer
and Radamsa as base fuzzers and, compared with AFL,
AFLFast, FairFuzz, QSYM, LibFuzzer and Radamsa, it shows
the strongest robustness and always performs the best. In total,
it discovers 76.4%, 140%, 100%, 81.8%, 66.7% and 93.5%
more unique bugs, executes 42.4%, 61.2%, 45.8%, 66.4%,
29.5% and 44.2% more paths and covers 15.5%, 17.8%,
12.9%, 26.1%, 19.9% and 14.8% more branches respectively.
These statistics demonstrate that it helps mitigate performance
variation and improves robustness and performance by the
ensemble approach with globally asynchronous and locally
synchronous seed synchronization mechanism.

5.5 Effects of Different Fuzzing Integration
To study the effects of the globally asynchronous and locally
synchronous based seed synchronization mechanism, we con-
duct a comparative experiment on EnFuzz−and EnFuzz-A,
both ensemble the same base fuzzers (two AFL, one AFLFast,
one FairFuzz) in parallel mode with four CPU cores. To study
the effects of different base fuzzers on ensemble fuzzing,
we also run EnFuzz-Q, EnFuzz-L and EnFuzz on Google’s
fuzzer-test-suite for 24 hours 10 times. To identify unique
bugs, we used stack backtraces to deduplicate crashes. The re-
sults are presented in Tables 9, 10 and 11, which shows the av-
erage number of paths executed, branches covered and unique
bugs detected by EnFuzz−, EnFuzz-A, EnFuzz-Q, EnFuzz-L,
and EnFuzz, respectively.

Table 9: Average number of paths covered by each Enfuzz on
Google’s fuzzer-test-suite for ten times.

Project EnFuzz− EnFuzz-A EnFuzz-Q EnFuzz-L EnFuzz

boringssl 2590 4058 3927 6782 7136
c-ares 149 167 159 251 253
guetzli 2066 3501 3472 4314 4508
lcms 1056 1846 1871 2253 2433
libarchive 4823 14563 14501 28531 31778
libssh 109 140 152 377 377
libxml2 11412 19928 18738 33940 35983
openssl-1.0.1 3496 4015 4095 4417 4552
openssl-1.0.2 3949 4976 5012 4983 4991
openssl-1.1.0 3850 4291 4383 4733 4801
pcre2 57721 81830 82642 84681 85386
proj4 362 393 399 708 709
re2 9053 13019 14453 17056 17155
woff2 19 25 24 1314 1324
freetype2 17692 22512 20134 26421 27812
harfbuzz 10438 14997 15019 16328 16894
json 648 1101 1183 1271 1298
libjpeg 1395 2501 2475 2588 2638
libpng 480 601 652 706 781
llvm 7953 9706 9668 10883 10935
openthread 197 281 743 1489 1506
sqlite 279 311 325 598 636
vorbis 928 1604 1639 1673 1699
wpantund 4521 5718 5731 5797 5823
Total 145186 212084 211397 262094 271408
Improvement – 46% ↑ 48% ↑ 80% ↑ 87% ↑

Compared with EnFuzz-A, EnFuzz− ensembles the same
base fuzzers (AFL, AFLFast and FairFuzz), but does not im-
plement the seed synchronization mechanism. EnFuzz− per-
forms much worse on all applications. In total, it only covers
68.5% paths, 78.3% branches and detects 32.4% unique bugs
of EnFuzz-A. These statistics demonstrate that the globally
asynchronous and locally synchronous based seed synchro-
nization mechanism is critical to the ensemble fuzzing.

Table 10: Average number of branches covered by each En-
fuzz on Google’s fuzzer-test-suite for ten times.

Project EnFuzz− EnFuzz-A EnFuzz-Q EnFuzz-L EnFuzz

boringssl 3210 3996 4013 4016 4108
c-ares 285 285 285 285 285
guetzli 2074 3316 3246 3531 3644
lcms 2872 4054 4152 4098 4169
libarchive 6092 12689 11793 13267 13949
libssh 613 614 640 614 614
libxml2 14428 17657 16932 21664 21899
openssl-1.0.1 3612 4194 4204 4538 4673
openssl-1.0.2 4037 4176 4292 4202 4216
openssl-1.1.0 8642 9371 9401 9680 9827
pcre2 32471 51801 52751 52267 53912
proj4 267 267 267 907 907
re2 16300 18070 18376 19323 19688
woff2 120 120 121 3939 3945
freetype2 49927 55952 54193 58018 58192
harfbuzz 33915 43301 43379 44419 44708
json 4918 7109 7146 7268 7339
libjpeg 9826 15997 15387 16984 17071
libpng 3816 4487 4502 4589 4696
llvm 49186 58681 58329 60104 62918
openthread 2739 3221 4015 5503 5579
sqlite 2318 2898 2971 3189 3216
vorbis 10328 13872 13993 14210 14318
wpantund 33749 41537 41663 43104 43217
Total 295745 377665 376051 399719 407090
Improvement – 27% ↑ 28% ↑ 35% ↑ 38% ↑

Table 11: Average number of bugs found by each Enfuzz on
Google’s fuzzer-test-suite for ten times.

Project EnFuzz− EnFuzz-A EnFuzz-Q EnFuzz-L EnFuzz

boringssl 0 0 0 1 1
c-ares 1 3 2 3 3
guetzli 0 0 1 1 1
lcms 0 1 1 2 2
libarchive 0 0 1 1 1
libssh 0 0 2 2 2
libxml2 1 1 1 2 3
openssl-1.0.1 0 3 3 4 4
openssl-1.0.2 3 5 5 5 6
openssl-1.1.0 2 5 5 6 6
pcre2 3 6 6 7 8
proj4 0 2 2 2 3
re2 0 1 1 2 2
woff2 0 1 1 1 1
freetype2 0 0 0 0 0
harfbuzz 0 1 1 1 1
json 1 2 2 2 3
libjpeg 0 0 0 0 0
libpng 0 0 0 0 0
llvm 0 1 1 2 2
openthread 0 0 1 3 4
sqlite 0 1 1 2 3
vorbis 1 4 4 4 4
wpantund 0 0 0 0 0

Total 12 37 41 53 60
Improvement – 208% ↑ 242% ↑ 342% ↑ 400% ↑

1976 28th USENIX Security Symposium USENIX Association

For EnFuzz-A, which ensembles AFL, AFLFast and Fair-
Fuzz as base fuzzers and implements the seed synchronization
with global coverage map, compared with AFL, AFLFast and
FairFuzz running in parallel mode with four CPU cores used
(as shown in Table 6, Table 7 and Table 8), it always executes
more paths and covers more branches on all applications. In
total, it covers 11.3%, 25.9% and 13.9% more paths, achieves
7.2%, 9.3% and 4.8% more covered branches, and triggers
8.8%, 48% and 23% more unique bugs. It reveals that the
robustness and performance can be improved even when the
diversity of base fuzzers is small.

For the EnFuzz-Q which integrates AFL, AFLFast, Fair-
Fuzz and QYSM as base fuzzers, the results are shown
in the fourth columns of Tables 9, 10 and 11. Compared
with EnFuzz-A, EnFuzz-Q covers 1.1% more paths, executes
1.0% more branches and triggers 10.8% more unique bugs
than EnFuzz-A. The improvement is significantly smaller on
Google’s fuzzer-test-suite than on LAVA-M.

The reason for performance degradation between experi-
ments on LAVA-M and Google fuzzer-test-suite is that the
base codes of the four applications (who, uniq, base64 and
md5sum) in LAVA-M are small (2K-4K LOCs). The concolic
execution engine works well on them, but usually performs
the opposite or even hangs on real projects in fuzzer-test-suite
whose code base easily reaches 100k LOCs.

For the EnFuzz-L which integrates AFL, AFLFast, Fair-
Fuzz and libFuzzer as base fuzzers, the results are pre-
sented in the seventh columns of Tables 9, 10 and 11. As
mentioned in section A, the diversity among these base
fuzzers is much larger than with EnFuzz-A. Compared with
EnFuzz-A, EnFuzz-L always performs better on all target ap-
plications. In total, it covers 23.6% more paths, executes 5.8%
more branches and triggers 42.4% more unique bugs than
EnFuzz-A.

For the EnFuzz which integrates AFL, AFLFast, libFuzzer
and Radamsa as base fuzzers, the diversity is the largest be-
cause they cover all three diversity heuristics. Compared
with EnFuzz-L, it performs better and covers 3.6% more
paths, executes 1.8% more branches and triggers 13.2% more
unique bugs. Both EnFuzz and EnFuzz-L performs better
than EnFuzz-Q. These statistics demonstrate that the more di-
versity among these base fuzzers, the better the ensemble
fuzzer should perform. For real applications with a large
code base, compared with hybrid conclic fuzzing or ensem-
ble fuzzing with symbolic execution, the ensemble fuzzing
without symbolic execution may perform better.

5.6 Fuzzing Real-World Applications
We apply EnFuzz to fuzz more real-world applications from
GitHub and commercial products from Cisco, some of which
are well-fuzzed projects such as the image processing library
libpng and libjepg, the video processing library libwav, the
IoT device communication protocol libiec61850 used in hun-
dreds of thousands of cameras, etc. EnFuzz also performs
well. Within 24 hours, besides the coverage improvements,
EnFuzz finds 60 more unknown real bugs including 44 suc-
cessfully registered as CVEs, as shown in Table 13. All of
these new bugs and security vulnerabilities are detected in
a 64-bit machine with 36 cores (Intel(R) Xeon(R) CPU E5-

2630 v3@2.40GHz), 128GB of main memory, and Ubuntu
16.04 as the host OS.

Table 12: Unique previously unknown bugs detected by each
tool within 24 hours on some real-world applications.

Project AFL AFLFast FairFuzz LibFuzzer QSYM EnFuzz

Bento4_mp4com 5 4 5 5 4 6
Bento4_mp4tag 5 4 4 5 4 7
bitmap 1 1 1 0 1 2
cmft 1 1 0 1 0 2
ffjpeg 1 1 1 0 1 2
flif 1 1 1 2 1 3
imageworsener 1 0 0 0 1 1
libjpeg-05-2018 3 3 3 4 3 5
libiec61850 3 2 2 1 2 4
libpng-1.6.34 2 1 1 1 2 3
libwav_wavgain 3 2 3 0 2 5
libwav_wavinfo 2 1 2 4 2 5
LuPng 1 1 1 3 1 4
pbc 5 5 6 7 6 9
pngwriter 1 1 1 1 2 2
total 35 28 31 34 32 60

As a comparison, we also run each tool on those real-world
applications to detect unknown vulnerabilities. The results
are presented in table 12. EnFuzz found all 60 unique bugs,
while other tools only found a portion of these bugs. Com-
pared with AFL, AFLFast, FairFuzz, LibFuzzer and QSYM,
EnFuzz detected 71.4%, 114%, 93.5%, 76.4%, 87.5% more
unique bugs respectively. The results demonstrate the effec-
tiveness of EnFuzz in detecting real vulnerabilities in more
general projects. For example, in the well-fuzzed projects
libwav and libpng, we can still detect 13 more real bugs, 7
of which are assigned as CVEs. We give an analysis of the
project libpng for a more detailed illustration. libpng is a
widely used C library for reading and writing PNG image
files. It has been fuzzed many times and is one of the projects
in Google’s OSS-Fuzz, which means it has been continually
fuzzed by multiple fuzzers many times. But with EnFuzz, we
detect three vulnerabilities, including one segmentation fault,
one stack-buffer-overflow and one memory leak. The first two
vulnerabilities were assigned as CVEs (CVE-2018-14047,
CVE-2018-14550).

In particular, CVE-2018-14047 allows remote attackers
to cause a segmentation fault via a crafted input. We ana-
lyze the vulnerability with AddressSanitizer and find it is
a typical memory access violation. The problem is that in
function png_free_data in line 564 of png.c, the info_ptr
attempts to access an invalid area of memory. The error oc-
curs in png_free_data during the free of text-related data
with specifically crafted files, and causes reading of invalid
or unknown memory, as show in Listing 1. The new vulnera-
bilities and CVEs in the IoT device communication protocol
libiec6185 can also crash the service and have already been
confirmed and repaired.

We also apply each base fuzzer (AFL, AFLFast, FairFuzz,
libFuzzer and QSYM) to fuzz libpng separately, the above
vulnerability is not detected. To trigger this bug, 6 function
calls and 11 compares (2 for integer, 1 for boolean and 8 for

USENIX Association 28th USENIX Security Symposium 1977

#ifdef PNG_TEXT_SUPPORTED
/* Free text item num or (if num == -1)

all text items */
if (info_ptr ->text != NULL &&

((mask & PNG_FREE_TEXT) &
info_ptr ->free_me) != 0)

Listing 1: The error code of libpng for CVE-2018-14047

pointer) are required. It is difficult for other fuzzers to detect
bugs in such deep paths without the seeds synchronization
of EnFuzz. The performances of these fuzzers over time in
libpng are presented in Figure 4. The results demonstrate
that generalization and scalability limitations exist in these
base fuzzers – the two optimized fuzzers AFLFast and Fair-
Fuzz perform worse than the original AFL for libpng, while
EnFuzz performs the best. Furthermore, except for those eval-
uations on benchmarks and real projects, EnFuzz had already
been deployed in industry practice, and more new CVEs were
being continuously reported.

(a) Number of paths over time

(b) Number of branches over time

Figure 4: Performance of each fuzzer over time in libpng.
Each fuzzer runs in four CPU cores for 24 hours.

Table 13: The 44 CVEs detected by EnFuzz in 24 hours.
Project Count CVE-2018-Number

Bento4_mp4com 6 14584, 14585, 14586, 14587,
14588, 14589

Bento4_mp4tag 6 13846, 13847, 13848, 14590,
14531, 14532

bitmap 1 17073
cmft 1 13833
ffjpeg 1 16781
flif 1 12109
imageworsener 1 16782
libjpeg-05-2018 4 11212, 11213, 11214, 11813
libiec61850 3 18834, 18937, 19093
libpng-1.6.34 2 14048, 14550
libwav_wavgain 2 14052, 14549
libwav_wavinfo 3 14049, 14050, 14051
LuPng 3 18581, 18582, 18583
pbc 9 14736, 14737, 14738, 14739,

14740, 14741, 14742, 14743,
14744

pngwriter 1 14047

6 Discussion

Based on benchmarks such as LAVA-M and Google’s fuzzer-
test-suite, and several real projects, we demonstrate that this
ensemble fuzzing approach outperforms any base fuzzers.
However, some limitations still threaten the performance
of ensemble fuzzing. The representative limitations and the
workarounds are discussed below.

The first potential threat is the insufficient and imprecise di-
versity of base fuzzers. Section 4.1 describes our base fuzzer
selection, we propose three different heuristics to indicate
diversity of base fuzzers, including diversity of coverage in-
formation granularity, diversity of input genera-tion strategy,
and diversity of seed mutation selection strategy. According
to these three heuristics, we select AFL, AFLFast, FairFuzz,
libFuzzer, Radamsa and QSYM as the base fuzzers. Further-
more, we implement four prototypes of ensemble fuzzing and
demonstrate that the greater the diversity of base fuzzers, the
better the ensemble fuzzer performs. However, these three
different heuristics of diversity may be insufficient. More
diversity measures need to be proposed in future work. For
example, initial seeds determine the initial direction of fuzzing
and, thus, are significantly important for fuzzing, especially
for mutation-based fuzzers. Some fuzzers utilize initial seeds
generated by symbolic execution [29, 35] while some other
fuzzers utilize initial seeds constructed by domain experts
or grammar specifications. However, we select base fuzzers
manually according to the initial diversity heuristic, which is
also not accurate enough.

A possible solution to this threat is to quantify the initial
diversity value among different fuzzers for more accurate
selection. As defined in [14], the variance or diversity is a
measure of the distance of the data in relation to the average.
The average standard deviation of a data set is a percentage
that indicates how much, on average, each measurement dif-
fers from the other. To evaluate the diversity of different base
fuzzers, we can choose the most widely used AFL and its path

1978 28th USENIX Security Symposium USENIX Association

coverage as a baseline and then calculate standard deviation
of each tool from this baseline on the Google fuzzing-test-
suite. Then we can calculate the standard deviation of these
values as the initial measure of diversity for each base fuzzer,
as presented in formula (2) and (1), where n means the num-
ber of applications fuzzed by these base fuzzers, pi means the
number of paths covered by the current fuzzer of the target
application i and pAi means the number of paths covered by
AFL of the application i.

mean =
1
n

n

∑
i=1

pi− pAi

pAi

(1)

diversity =
1
n

n

∑
i=1

(
pi− pAi

pAi

−mean)
2

(2)

Take the diversity of AFLFast, FairFuzz, Radamsa, QSYM,
and libFuzzer for example, as shown in the statistics presented
in Table 14 of the appendix, compared with AFL on different
applications, the diversity of AFLFast is 0.040; the diversity
of FairFuzz is 0.062; the diversity of Radamsa is 0.197; the
diversity of QSYM is 0.271; the diversity of libFuzzer is
11.929. In the same way, the deviation on branches covered
and the bugs detected can be calculated. We can add these
three values together with different weight for the final di-
versity quantification. For example, the bug deviation should
be assigned with more weights, because from prior research,
coverage metrics (the number of paths or branches) are not
necessarily correlated well with bugs found. A more advanced
way to evaluate the amount of diversity would be to count
how many paths/branches/bugs were found by one fuzzer and
not by any of the others.

The second potential threat is the mechanism scalability
of the ensemble architecture. Section 4.2 describes the en-
semble architecture design, and proposes the globally asyn-
chronous and locally synchronous based seed synchronization
mechanism. The seed synchronization mechanism focuses
on enhancing cooperation among these base fuzzers during
their fuzzing processes. With the help of seeds sharing, the
performance of ensemble fuzzing is much improved and is
better than any of the constituent base fuzzers with the same
computing resources usage. However, this mechanism can
still be improved for better scalability on different applica-
tions and fuzzing tasks. EnFuzz only synchronizes the coarse-
grained information – interesting seeds, rather than the fine-
grained information. For example, we could synchronize the
execution trace and array index values of each base fuzzer
to improve their effectiveness in cooperation. Furthermore,
we currently select and mix base fuzzers manually accord-
ing to three heuristics. When scaled to arbitrary number of
cores, it should be carefully investigated with huge number
of empirical evaluations. A possible solution is that the base
fuzzers will be dynamically selected and initiated with dif-
ferent number of cores according to the real-time number of
paths/branches/bugs found individually by each fuzzer. In
the beginning, we have a set of different base fuzzers; then
Enfuzz selects n (this number can be configured) base fuzzers
randomly. If one fuzzer cannot contribute to coverage for a
long time, then it will be terminated, and one new base fuzzer

from the sets will be setup for fuzzing or the existing live base
fuzzer with better coverage will be allocated with more cores.

We can also apply some effective ensemble mechanisms in
ensemble learning such as Boosting to ensemble fuzzing to
improve the scalability. Boosting is a widely used ensemble
mechanism which will reweigh the base learner dynamically
to improve the performance of the ensemble learner: exam-
ples that are misclassified gain weight and examples that are
classified correctly lose weight. To implement this idea in
ensemble fuzzing, we could start up a master thread to moni-
tor the execution statuses of all base fuzzers and record more
precise information of each base fuzzer, then reassign each
base fuzzer some interesting seeds accordingly.

For the number of base fuzzers and parameters in ensemble
fuzzing implementation, it is scalable for integration of most
fuzzers. Theoretically, the more base fuzzers with diversity,
the better ensemble fuzzing performs. We only use four base
fuzzers in our evaluation with four CPU cores. The more
computing resources we get, higher performance the fuzzing
practice acquires. Furthermore, in our implementation, we
have tried different values of period time, and the results are
very sensitive to the specific setting of this value. It only
affects the performance in the beginning, but affects little in
the end. Furthermore, refering to the GALS system design,
we can also allocate a different synchronization frequency for
each local fuzzer dynamically.

7 Conclusion

In this paper, we systematically investigate the practical en-
semble fuzzing strategies and the effectiveness of ensemble
fuzzing of various fuzzers. Applying the idea of ensemble
fuzzing, we bridge two gaps. First, we come up with a method
for defining the diversity of base fuzzers and propose a way of
selecting a diverse set of base fuzzers. Then, inspired by AFL
in parallel mode, we implement a concrete ensemble archi-
tecture with one effective ensemble mechanism, a seed syn-
chronization mechanism. EnFuzz always outperforms other
popular base fuzzers in terms of unique bugs, path and branch
coverage with the same resource usage. EnFuzz has found 60
new bugs in several well-fuzzed projects and 44 new CVEs
were assigned. Our ensemble architecture can be easily uti-
lized to integrate other base fuzzers for industrial practice.

Our future work will focus on three directions: the first
is to try some other heuristics and more accurate accumu-
lated quantification of diversity in base fuzzers; the second
is to improve the ensemble architecture with more advanced
en- semble mechanism and synchronize more fine-grained
information; the last is to improve the ensemble architecture
with intelligent resource allocation such as dynamically ad-
justing the synchronization period for each base fuzzer, and
allocating more CPU cores to the base fuzzer that shares more
interesting seeds.

Acknowledgments

We thank the anonymous reviewers, and our shepherd
Thorsten Holz, for their helpful feedback and the support
from Huawei. Yu Jiang is the correspondence author.

USENIX Association 28th USENIX Security Symposium 1979

References

[1] Fuzzer automation with spike. http:
//resources.infosecinstitute.com/
fuzzer-automation-with-spike/. [Online;
accessed 12-February-2018].

[2] Cert bff - basic fuzzing framework. https:
//vuls.cert.org/confluence/display/tools/
CERT+BFF+-+Basic+Fuzzing+Framework, 2012.
[Online; accessed 10-April-2018].

[3] Afl in parallel mode. https://github.com/
mcarpenter/afl/blob/master/docs/parallel_
fuzzing.txt, 2016. [Online; accessed 10-April-2019].

[4] Continuous fuzzing for open source software.
https://opensource.googleblog.com/2016/
12/announcing-oss-fuzz-continuous-fuzzing.
html, 2016. [Online; accessed 10-April-2018].

[5] Google. honggfuzz. https://google.github.io/
honggfuzz/, 2016. [Online; accessed 10-April-2018].

[6] libfuzzer in parallel mode. https://github.
com/google/fuzzer-test-suite/blob/master/
tutorial/libFuzzerTutorial.md, 2016. [Online;
accessed 10-April-2019].

[7] Technical details for afl. http://lcamtuf.coredump.
cx/afl/technical_details.txt, 2016. [Online; ac-
cessed 10-April-2019].

[8] fuzzer-test-suite. https://github.com/google/
fuzzer-test-suite, 2017. [Online; accessed 10-
April-2018].

[9] Google security blog. https://
security.googleblog.com/2017/05/
oss-fuzz-five-months-later-and.html, 2017.
[Online; accessed 10-April-2018].

[10] libfuzzer. https://llvm.org/docs/LibFuzzer.
html, 2017. [Online; accessed 10-April-2018].

[11] Sanitizercoverage in llvm. https://clang.llvm.
org/docs/SanitizerCoverage.html, 2017. [Online;
accessed 10-April-2018].

[12] Clusterfuzz document. https://github.
com/google/oss-fuzz/blob/master/docs/
clusterfuzz.md, 2018. [Online; accessed 2-
November-2018].

[13] Clusterfuzz integration document. https:
//chromium.googlesource.com/chromium/src/
testing/libfuzzer/+/HEAD/clusterfuzz.md,
2018. [Online; accessed 2-November-2018].

[14] BENJAMIN, J. R., AND CORNELL, C. A. Probabil-
ity, statistics, and decision for civil engineers. Courier
Corporation, 2014.

[15] BÖHME, M., PHAM, V.-T., NGUYEN, M.-D., AND
ROYCHOUDHURY, A. Directed greybox fuzzing. In Pro-
ceedings of the 2017 ACM SIGSAC Conference on Com-
puter and Communications Security (CCS17) (2017).

[16] BÖHME, M., PHAM, V.-T., AND ROYCHOUDHURY, A.
Coverage-based greybox fuzzing as markov chain. In
Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security (2016), ACM,
pp. 1032–1043.

[17] CHA, S. K., WOO, M., AND BRUMLEY, D. Program-
adaptive mutational fuzzing. In Security and Privacy
(SP), 2015 IEEE Symposium on (2015), IEEE, pp. 725–
741.

[18] CHEN, P., AND CHEN, H. Angora: Efficient fuzzing
by principled search. arXiv preprint arXiv:1803.01307
(2018).

[19] DOLAN-GAVITT, B., HULIN, P., KIRDA, E., LEEK, T.,
MAMBRETTI, A., ROBERTSON, W., ULRICH, F., AND
WHELAN, R. Lava: Large-scale automated vulnerability
addition. In Security and Privacy (SP), 2016 IEEE
Symposium on (2016), IEEE, pp. 110–121.

[20] EDDINGTON, M. Peach fuzzing platform. Peach Fuzzer
(2011), 34.

[21] GODEFROID, P., KIEZUN, A., AND LEVIN, M. Y.
Grammar-based whitebox fuzzing. In ACM Sigplan
Notices (2008), vol. 43, ACM, pp. 206–215.

[22] HELIN, A. Radamsa. https://gitlab.com/akihe/
radamsa, 2016.

[23] HOCEVAR, S. zzuf - multi-purpose fuzzer. http://
caca.zoy.org/wiki/zzuf, 2007. [Online; accessed
10-April-2018].

[24] HOLLER, C., HERZIG, K., AND ZELLER, A. Fuzzing
with code fragments. In USENIX Security Symposium
(2012), pp. 445–458.

[25] KLEES, G., RUEF, A., COOPER, B., WEI, S., AND
HICKS, M. Evaluating fuzz testing. In Proceedings of
the 2018 ACM SIGSAC Conference on Computer and
Communications Security (2018), ACM, pp. 2123–2138.

[26] LEMIEUX, C., AND SEN, K. Fairfuzz: Targeting rare
branches to rapidly increase greybox fuzz testing cover-
age. arXiv preprint arXiv:1709.07101 (2017).

[27] LIANG, J., JIANG, Y., CHEN, Y., WANG, M., ZHOU,
C., AND SUN, J. Pafl: extend fuzzing optimizations
of single mode to industrial parallel mode. In Proceed-
ings of the 2018 26th ACM Joint Meeting on European
Software Engineering Conference and Symposium on
the Foundations of Software Engineering (2018), ACM,
pp. 809–814.

1980 28th USENIX Security Symposium USENIX Association

http://resources.infosecinstitute.com/fuzzer-automation-with-spike/
http://resources.infosecinstitute.com/fuzzer-automation-with-spike/
http://resources.infosecinstitute.com/fuzzer-automation-with-spike/
https://vuls.cert.org/confluence/display/tools/CERT+BFF+-+Basic+Fuzzing+Framework
https://vuls.cert.org/confluence/display/tools/CERT+BFF+-+Basic+Fuzzing+Framework
https://vuls.cert.org/confluence/display/tools/CERT+BFF+-+Basic+Fuzzing+Framework
https://github.com/mcarpenter/afl/blob/master/docs/parallel_fuzzing.txt
https://github.com/mcarpenter/afl/blob/master/docs/parallel_fuzzing.txt
https://github.com/mcarpenter/afl/blob/master/docs/parallel_fuzzing.txt
https://opensource.googleblog.com/2016/12/announcing-oss-fuzz-continuous-fuzzing.html
https://opensource.googleblog.com/2016/12/announcing-oss-fuzz-continuous-fuzzing.html
https://opensource.googleblog.com/2016/12/announcing-oss-fuzz-continuous-fuzzing.html
https://google.github.io/honggfuzz/
https://google.github.io/honggfuzz/
 https://github.com/google/fuzzer-test-suite/blob/master/tutorial/libFuzzerTutorial.md
 https://github.com/google/fuzzer-test-suite/blob/master/tutorial/libFuzzerTutorial.md
 https://github.com/google/fuzzer-test-suite/blob/master/tutorial/libFuzzerTutorial.md
http://lcamtuf.coredump.cx/afl/technical_details.txt
http://lcamtuf.coredump.cx/afl/technical_details.txt
https://github.com/google/fuzzer-test-suite
https://github.com/google/fuzzer-test-suite
https://security.googleblog.com/2017/05/oss-fuzz-five-months-later-and.html
https://security.googleblog.com/2017/05/oss-fuzz-five-months-later-and.html
https://security.googleblog.com/2017/05/oss-fuzz-five-months-later-and.html
https://llvm.org/docs/LibFuzzer.html
https://llvm.org/docs/LibFuzzer.html
https://clang.llvm.org/docs/SanitizerCoverage.html
https://clang.llvm.org/docs/SanitizerCoverage.html
https://github.com/google/oss-fuzz/blob/master/docs/clusterfuzz.md
https://github.com/google/oss-fuzz/blob/master/docs/clusterfuzz.md
https://github.com/google/oss-fuzz/blob/master/docs/clusterfuzz.md
https://chromium.googlesource.com/chromium/src/testing/libfuzzer/+/HEAD/clusterfuzz.md
https://chromium.googlesource.com/chromium/src/testing/libfuzzer/+/HEAD/clusterfuzz.md
https://chromium.googlesource.com/chromium/src/testing/libfuzzer/+/HEAD/clusterfuzz.md
https://gitlab.com/akihe/radamsa
https://gitlab.com/akihe/radamsa
http://caca.zoy.org/wiki/zzuf
http://caca.zoy.org/wiki/zzuf

[28] LIANG, J., WANG, M., CHEN, Y., JIANG, Y., AND
ZHANG, R. Fuzz testing in practice: Obstacles and
solutions. In 2018 IEEE 25th International Confer-
ence on Software Analysis, Evolution and Reengineering
(SANER) (2018), IEEE, pp. 562–566.

[29] OGNAWALA, S., HUTZELMANN, T., PSALLIDA, E.,
AND PRETSCHNER, A. Improving function coverage
with munch: a hybrid fuzzing and directed symbolic
execution approach. In Proceedings of the 33rd Annual
ACM Symposium on Applied Computing (2018), ACM,
pp. 1475–1482.

[30] PETSIOS, T., ZHAO, J., KEROMYTIS, A. D., AND
JANA, S. Slowfuzz: Automated domain-independent
detection of algorithmic complexity vulnerabilities. In
Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security (2017), ACM,
pp. 2155–2168.

[31] SIRER, E. G., AND BERSHAD, B. N. Using produc-
tion grammars in software testing. In ACM SIGPLAN
Notices (1999), vol. 35, ACM, pp. 1–13.

[32] STEPHENS, N., GROSEN, J., SALLS, C., DUTCHER,
A., WANG, R., CORBETTA, J., SHOSHITAISHVILI, Y.,
KRUEGEL, C., AND VIGNA, G. Driller: Augmenting
fuzzing through selective symbolic execution. In NDSS
(2016), vol. 16, pp. 1–16.

[33] VEGGALAM, S., RAWAT, S., HALLER, I., AND BOS, H.
Ifuzzer: An evolutionary interpreter fuzzer using genetic
programming. In European Symposium on Research in
Computer Security (2016), Springer, pp. 581–601.

[34] WANG, J., CHEN, B., WEI, L., AND LIU, Y. Skyfire:
Data-driven seed generation for fuzzing, 2017.

[35] WANG, M., LIANG, J., CHEN, Y., JIANG, Y., JIAO, X.,
LIU, H., ZHAO, X., AND SUN, J. Safl: increasing and
accelerating testing coverage with symbolic execution
and guided fuzzing. In Proceedings of the 40th Interna-
tional Conference on Software Engineering: Companion
Proceeedings (2018), ACM, pp. 61–64.

[36] XU, W., KASHYAP, S., MIN, C., AND KIM, T. De-
signing new operating primitives to improve fuzzing
performance. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security
(2017), ACM, pp. 2313–2328.

[37] YANG, X., CHEN, Y., EIDE, E., AND REGEHR, J. Find-
ing and understanding bugs in c compilers. In ACM
SIGPLAN Notices (2011), vol. 46, ACM, pp. 283–294.

[38] YUN, I., LEE, S., XU, M., JANG, Y., AND KIM, T.
{QSYM}: A practical concolic execution engine tai-
lored for hybrid fuzzing. In 27th {USENIX} Security
Symposium ({USENIX} Security 18) (2018), pp. 745–
761.

[39] ZALEWSKI, M. American fuzzy lop. https://github.
com/mcarpenter/afl, 2015.

A Preliminary demonstration of diversity
among base fuzzers

To help select base fuzzers with larger diversity, we need to
estimate the diversity between each base fuzzer. In general,
the more differently they perform on different applications,
the more diversity among these base fuzzers. Accordingly,
we first run each base fuzzer in single mode, with one CPU
core on Google’s fuzzer-test-suite for 24 hours. Table 14 and
Table 15 show the number of paths and branches covered
by AFL, AFLFast, FairFuzz, libFuzzer, Radamsa and QSYM.
Table 16 shows the corresponding number of unique bugs. Be-
low we present the performance effects of the three diversity
heuristics proposed in Section 4.1 in detail.

1) Effects of seed mutation and seed selection strategy –
what kind of mutation and selection strategy you use, what
kind of path and branch you would cover The first three
columns of Table 14 show the performance of the AFL fam-
ily tools. Their differences are the seed mutation and seed
selection strategies. The original AFL performs the best on 5
applications, but performs the worst on other 10 applications.
AFLFast performs the best on 13 applications, and only per-
forms the worst on 4 applications. FairFuzz also performs the
best on 8 applications, but the worst on the other 9 applica-
tions. Although the total number of paths covered improves
slightly, the performance variation on each application is huge,
ranging from -57% to 38% in single cases.

From the first three columns in Table 15 and Table 16, we
get the same observation that the performance of these opti-
mized fuzzers varies significantly on different applications.
Although the total number of covered branches and unique
crashes improves slightly, the deviation of each application
is huge. AFLFast selects seeds that exercise low-frequency
paths to mutate more times. Take project lcms for exam-
ple, this seed selection strategy exercises more new paths by
avoiding covering “hot paths” too many times, but on project
libarchive, its “hot path” may be the key to further paths. Fair-
Fuzz mutates seeds to hit rare branches. Take project libxml2
for example, the rare branch fuzzing strategy guides FairFuzz
into deeper areas and covers more branches. However, on
libarchive, this strategy fails. FairFuzz spends much time in
deep paths and branches, ignoring breadth search. Unlike
libxml2, the breadth first search strategy of other fuzzers is
more effective on libarchive. In general, the mutation and
selection strategy decides the depth and breath of the covered
branch and path.

2) Effects of coverage information granularity–what kind of
guided information you use, what kind of coverage metric you
improve. The diversity between AFL and libFuzzer is their
coverage information granularity. According to the fourth col-
umn of Table 14, we find that compared with AFL, libFuzzer
performs better on 17 applications, and covers 30.3% more
paths in total. However, according to the fourth column of
the Table 15, compared with AFL, libFuzzer only performs
better on 11 applications, which means on 6 applications, lib-
Fuzzer covers more paths but less branches. For total branch
count, AFL covers 7.3% more than libFuzzer. The reason
is that AFL mutates seed by tracking edge hit counts while
libFuzzer utilizes the SanitizerCoverage instrumentation to
track block hit counts. AFL prefers to cover more branches

USENIX Association 28th USENIX Security Symposium 1981

https://github.com/mcarpenter/afl
https://github.com/mcarpenter/afl

while libFuzzer is better at executing more paths. In general,
edge-guided means more branches covered, and block-guided
means more paths covered.

Table 14: Average number of paths for single mode.
Project AFL AFLFast FairFuzz libFuzzer Radamsa QSYM

boringssl 1334 1674 1760 3528 1682 1207
c-ares 80 84 88 123 78 72
guetzli 1382 1090 1030 1773 1562 1268
lcms 656 864 434 338 550 605
libarchive 3756 2834 1630 10124 4570 3505
libssh 64 68 62 201 63 87
libxml2 5762 7956 8028 19663 9392 5098
openssl-1.0.1 2397 2103 2285 1709 2303 2330
openssl-1.0.2 2456 2482 2040 1881 2108 1947
openssl-1.1.0 2439 2380 2501 1897 2311 2416
pcre2 32310 35288 36176 20981 37850 24501
proj4 220 218 218 334 182 208
re2 5860 6014 5016 6327 5418 5084
woff2 14 10 12 224 10 15
freetype2 7748 10939 10714 16360 9825 7188
harfbuzz 6793 8068 8668 10800 5688 6881
json 466 412 408 499 564 504
libjpeg 704 979 722 448 634 638
libpng 170 159 76 263 493 577
llvm 4830 5760 5360 5646 4593 4096
openthread 104 123 127 976 144 141
sqlite 179 193 172 431 256 180
vorbis 891 1122 821 848 875 898
wpantund 2959 3048 3513 3510 3146 2975

Total 83575 93867 91862 108884 94296 72422

Table 15: Average number of branches for single mode.
Project AFL AFLFast FairFuzz libFuzzer Radamsa QSYM

boringssl 2645 3054 3115 3608 3641 2539
c-ares 126 122 126 100 126 126
guetzli 1913 1491 1428 2774 2118 1906
lcms 2216 2755 935 2661 1661 2075
libarchive 4906 3961 2387 3561 5263 4366
libssh 604 604 604 518 604 626
libxml2 10082 12407 12655 13037 14287 9779
openssl-1.0.1 3809 3879 3901 2591 2993 3829
openssl-1.0.2 3978 4015 3883 2308 4068 3796
openssl-1.1.0 8091 8132 8212 7810 8292 8032
pcre2 27308 29324 28404 13463 30615 19557
proj4 264 260 260 683 264 258
re2 15892 15970 15073 11369 16485 14477
woff2 114 112 114 1003 114 115
freetype2 36798 44028 45319 45541 49468 33492
harfbuzz 16872 16051 19045 18659 16782 16886
json 4462 3626 4846 4547 4821 4538
libjpeg 6865 8495 4028 8828 6982 6377
libpng 1917 1878 1135 1651 2126 2294
llvm 54107 55697 57356 51548 53427 47226
openthread 2062 2473 2646 5295 2231 2410
sqlite 2706 2784 2771 2178 2190 2709
vorbis 11836 13561 12605 5902 11217 12531
wpantund 36059 36620 37269 28694 37075 35960

Total 255631 271299 268116 238329 276850 235903

3) Effects of Input generation strategy–what kind of genera-
tion strategy you use, what kind of corresponding application
you fuzz better. The diversity between AFL and Radamsa is

the input generation strategy. From the fifth columns of Table
14 and Table 15, compared with AFL, the plenty of inputs
generated by Radamsa have some side effects on most target
applications (14 applications). Too many extra inputs will
slow down the execution speed of the fuzzer. However, for
some applications, the inputs generated by Radamsa will im-
prove the performance effectively. Take libxml2 for example,
Radamsa has some domain knowledge that prefers to generate
some structured data and specific complex format data. These
domain knowledge are not available in most mutation-based
fuzzers, and this is a critical disadvantage of AFL. But with
the help of generation-based fuzzers, the performance of AFL
can be improved greatly.

Table 16: Average number of bugs for single mode.
Project AFL AFLFast FairFuzz libFuzzer Radamsa QSYM

boringssl 0 0 0 1 0 0
c-ares 1 2 2 1 2 1
guetzli 0 0 0 0 0 0
lcms 0 0 0 0 0 0
libarchive 0 0 0 0 0 0
libssh 0 0 0 1 0 0
libxml2 0 1 0 1 1 0
openssl-1.0.1 0 0 0 0 0 0
openssl-1.0.2 2 1 0 1 1 2
openssl-1.1.0 0 0 0 0 0 0
pcre2 2 1 1 1 2 1
proj4 0 0 0 1 0 0
re2 0 0 0 1 0 0
woff2 0 0 0 1 0 0
freetype2 0 0 0 0 0 0
harfbuzz 0 0 0 1 0 0
json 1 1 0 0 1 0
libjpeg 0 0 0 0 0 0
libpng 0 1 1 1 1 1
llvm 0 0 1 1 0 1
openthread 0 0 0 1 0 0
sqlite 0 0 0 1 1 1
vorbis 1 1 2 1 1 2
wpantund 0 0 0 0 0 0

Total 7 8 7 15 10 9

In conclusion: Different base fuzzers perform variously on
distinct target applications, showing the diversity for the base
fuzzers. The more diversity of these base fuzzers, the more
differently they perform on different applications. Further-
more, the above three types of effects should be considered
and could be incorporated into the fuzzing evaluation guide-
line [25] to avoid biased test cases or metrics selection when
evaluating different types of fuzzing optimization.

B Does performance vary in different modes?

We choose AFL as the baseline, and compare other tools with
AFL on path coverage to demonstrate the performance varia-
tion. Figure 5 shows the average number of paths executed
on Google’s fuzzer-test-suite by each base fuzzer compared
with AFL in single mode. We also collect the result of each
base fuzzer running in parallel mode with four threads, and
the result is presented in Figure 6. Figure 7 shows the average

1982 28th USENIX Security Symposium USENIX Association

(a) performance of
AFLFast in single thread

(b) performance of
FairFuzz in single thread

(c) performance of
libFuzzer in single thread

(d) performance of
Radamsa in single thread

(d) performance of QSYM
in single thread

Figure 5: Paths covered by base fuzzers compared with AFL in single mode on a single core.

(a) performance of
AFLFast in four threads

(b) performance of
FairFuzz in four threads

(c) performance of
libFuzzer in four threads

(d) performance of
Radamsa in four threads

(d) performance of QSYM
in four threads

Figure 6: Paths covered by base fuzzers compared with AFL in parallel mode with four threads on four cores.

(a) performance of
EnFuzz− in four threads

(a) performance of
EnFuzz-A in four threads

(a) performance of
EnFuzz-Q in four threads

(b) performance of
EnFuzz-L in four threads

(c) performance of
EnFuzz in four threads

Figure 7: Paths covered by EnFuzz with four threads on four cores compared with AFL in parallel mode with four threads on
four cores. EnFuzz− without the proposed seed synchronization performs the worst, and EnFuzz performs the best.

number of paths executed by EnFuzz compared with AFL in
parallel mode with four CPU cores. From these results, we
get the following conclusions:

• From the results of Figure 5 and Figure 6, we find
that compared with AFL, the two optimized fuzzers
AFLFast and FairFuzz, block coverage guided fuzzer
libFuzzer, generation-based fuzzer Radamsa and hybrid
fuzzer QSYM perform variously on different applica-
tions both in single mode and in parallel mode. It demon-
strates that the performance of these base fuzzers is chal-
lenged by the diversity of the diverse real applications.
The performance of their fuzzing strategies cannot con-
stantly perform better than AFL. The performance varia-
tion exists in these state-of-the-art fuzzers.

• Comparing the result of Figure 5 and Figure 6, we find
that the performance of these base fuzzers in parallel
mode are quite different from those in single mode, es-
pecially for AFLFast and FairFuzz. In single mode, the
other two optimized base fuzzers perform better than
AFL in many applications. But in parallel mode, the
result is completely opposite that the original AFL per-
forms better on almost all applications.

• From the result of Figure 7, it reveals that EnFuzz-A,
EnFuzz-L and EnFuzz always perform better than AFL
on the target applications. For the same computing re-
sources usage where AFL running in parallel mode with
four CPU cores, EnFuzz-A covers 11.26% more paths
than AFL, ranging from 4% to 38% in single cases,

EnFuzz-Q covers 12.48% more paths than AFL, rang-
ing from 5% to 177% in single cases, EnFuzz-L cov-
ers 37.50% more paths than AFL, ranging from 13% to
455% in single cases. EnFuzz covers 42.39% more paths
than AFL, ranging from 14% to 462% in single cases.
Through ensemble fuzzing, the performance variation
can be reduced.

• From the result of Figure 7, it reveals that EnFuzz− with-
out seed synchronization performs worse than AFL paral-
lel mode under the same resource constraint. Compared
with EnFuzz-A, EnFuzz-Q covers 1.09% more paths,
EnFuzz-L covers 23.58% more paths. For EnFuzz, it
covers 27.97% more paths than EnFuzz-A, 26.59% more
paths than EnFuzz-Q, 3.6% more paths than EnFuzz-L,
and always performs the best on all applications. The
more diversity among those integrated base fuzzers, the
better performance of ensemble fuzzing, and the seed
synchronization contributes more to the improvements.

In conclusion: the performance of the state-of-the-art fuzzers
is greatly challenged by the diversity of those real-world appli-
cations, and it can be improved through the ensemble fuzzing
approach. Furthermore, those optimized strategies work in
single mode can not be directly scaled to parallel mode which
is widely used in industrial practice. The ensemble fuzzing
approach is a critical enhancement to the single and parallel
mode of those optimized strategies.

USENIX Association 28th USENIX Security Symposium 1983

	Introduction
	Related Work
	Generation-based Fuzzing
	Mutation-based Fuzzing
	Cluster and Parallel Fuzzing in Industry
	Main Differences

	Motivating Example
	Ensemble Fuzzing
	Base Fuzzer Selection
	Ensemble Architecture Design

	Evaluation
	Ensemble Fuzzer Implementation
	Data and Environment Setup
	Preliminary Evaluation on LAVA-M
	Evaluation on Google's fuzzer-test-suite
	Effects of Different Fuzzing Integration
	Fuzzing Real-World Applications

	Discussion
	Conclusion
	Preliminary demonstration of diversity among base fuzzers
	Does performance vary in different modes?

