
TinyNet: a Lightweight, Modular, and Unified Network
Architecture for the Internet of Things

Wei Dong1,2, Jiamei Lv1,2, Gonglong Chen1, Yihui Wang1

Huikang Li1, Yi Gao1,2, Dinesh Bharadia3
1College of Computer Science, Zhejiang University.

2Alibaba-Zhejiang University Joint Institute of Frontier Technologies.
3University of California, San Diego

{dongw,lvjm,chengl,wangyh,lihk,gaoyi}@zju.edu.cn,dineshb@eng.ucsd.edu

Abstract

Interoperability among a vast number of heterogeneous IoT nodes
is a key issue. However, the communication among IoT nodes does
not fully interoperate to date. The underlying reason is the lack of a
lightweight and unified network architecture for IoT nodes having
different radio technologies. In this paper, we design and implement
TinyNet, a lightweight, modular, and unified network architecture
for representative low-power radio technologies including 802.15.4,
BLE, and LoRa. The modular architecture of TinyNet allows us to
simplify the creation of new protocols by selecting specific modules
in TinyNet. We implement TinyNet on realistic IoT nodes including
TI CC2650 and Heltec IoT LoRa nodes. We perform extensive
evaluations. Results show that TinyNet (1) allows interoperability at
or above the network layer; (2) allows code reuse for multi-protocol
co-existence and simplifies new protocols design by module
composition; (3) has a small code size and memory footprint.

CCS Concepts

• Networks→ Network design principles; Network protocol

design.

Keywords

Network architecture, Internet of Things, Interoperability.

ACM Reference Format:

Wei Dong1,2, Jiamei Lv1,2, Gonglong Chen1, Yihui Wang1, Huikang Li1,
Yi Gao1,2, Dinesh Bharadia3. 2022. TinyNet: a Lightweight, Modular, and
Unified Network Architecture for the Internet of Things. In The 20th

Annual International Conference on Mobile Systems, Applications and Services

(MobiSys ’22), June 25–July 1, 2022, Portland, OR, USA. ACM, New York, NY,
USA, 13 pages. https://doi.org/10.1145/3498361.3538919

1 Introduction

In the last few years, the Internet of Things (IoT) has become one of
the most promising and exciting developments in technology and
business. Low-power wireless radio technologies form the basis of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MobiSys ’22, June 25–July 1, 2022, Portland, OR, USA

© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9185-6/22/06. . . $15.00
https://doi.org/10.1145/3498361.3538919

many IoT applications and are continuously evolving over the years.
For example, 802.15.4 is a relatively mature technology and has
attracted a lot of research attention from academia in the past years
[30, 43]. Bluetooth and BLE (Bluetooth Low Energy) are widely
used in our daily life. LoRa is a representative LPWAN (Low Power
Wide Area Network) technology and gains increasing research
interests [14, 42]. These low-power wireless radio technologies
have drastically different implementations for their protocol stacks
(see Figure 1(a)).

Most IoT devices do not directly support IP and must rely
on the gateway to provide IP support, which in turn provides
interoperability to the rest of the Internet. In other words, most IoT
devices are not directly interoperatable with the rest of the Internet
or other IoT devices. For example, IoT nodes without IP (due to strict
resource constraints) cannot use application-layer IoT protocols,
e.g., MQTT [40], to specify high-level semantics to communicate
with each other. The so called “missing interoperability” could lead
to substantial threat to the predicted economic value, as pointed
out by McKinsey analysis [36]. Lack of interoperability means that
service providers are bound to the IoT device or software offered
by a single provider and must stick with it. This may bring the
potential risk of higher operating costs later on, as well as product
functionality and stability issues [35].

To overcome this problem, the research community has proposed
several proposals. For example, 6LoWPAN [24] was proposed
a decade ago. This standard encourages the use of IPv6 and
specifies how to format IPv6 packets in a compact way over
low-power wireless links. Recent proposals have provided low-
cost implementation of IP for different radio stacks. For example,
OpenThread [28] offers IPv6-over-802.15.4 stack to problems such
as interoperability, security, power, and architecture requirements.
BLEach [47] designs an IPv6-over-BLE stack which allows to
fine-tune communication performance. TCPlp [30] designs a full
TCP/IP stack over 802.15.4 networks so that 802.15.4 nodes can be
connected with existing TCP/IP networks as part of the Internet of
Things. The above research works are essential building blocks
of the proposal of Web of Things which is at the center of a
standardization effort at W3C [54].

Existing IoT network stacks, e.g., stacks in LiteOS [23] and
TencentOS Tiny [49], try to be Internet compatible. However,
they fall short in providing a unified and modular architectural
approach (see Figure 1(b)). More specifically, these stacks only
provide unification above the network layer for BLE and 802.15.4,
while the lower layers, as well as the LoRa stack, are still non-
interoperatable. The above difficulties come from the fact that

248

MobiSys ’22, June 25–July 1, 2022, Portland, OR, USA W. Dong et al.

Figure 1: Three different IoT network architectures. (a) Vertically-integrated architecture (b) Existing Internet compatible

architecture (e.g. stacks in Huawei LiteOS and TencentOS Tiny) (c) TinyNet.

different radio technologies often require drastically different
implementations, causing difficulties in interoperating among IoT
nodes with different radio technologies.

In this paper, we present TinyNet, a lightweight network
architecture and its implementation that provide IP support to
multiple IoT radio technologies. TinyNet has the following design
goals:

• Unified: TinyNet should be able to unify many different radio
technologies at the network layer so that heterogeneous IoT
nodes can seamlessly communicate with each other at or above
the network layer, using high layer protocols.

• Modular: The design should be modular so that new protocols
can be easily adopt the framework and extend it to any new
radio technologies.

• Lightweight: The implementation should be lightweight,
allowing the installation on low-end IoT nodes. Furthermore,
on gateways, it should also be lightweight to support multiple
radios without repeating each protocol in its entirety.

It is challenging to achieve unification of multiple radio
technologies with proper modularity. We introduce layer 2.5, i.e.,
L2.5, to allow multiple link technologies and multiple network-
layer routing protocols to coexist and evolve independently of
each other (see Figure 1(c)). Within L2.5, we introduce two MAC-
relevant layers and three abstractions (i.e., property, service and
event) to decouple the interfaces to upper modules and the specific
implementations in other network stacks. We have also proposed
a set of novel techniques, including unified neighbor table design

(Section 4.3), automatic synchronization of transmission/reception
slots (Section 4.4), conflict graph based radio scheduling for multi-
radio platforms (Section 4.2), to deal with specific challenges in
handling heterogeneous radios, which has not been addressed in
existing literature [43, 47].

We implement TinyNet on CC2650 (ROM 128kB, RAM 20kB,
multi-standard radio chip supporting 802.15.4/ZigBee and BLE) and
Heltec IoT LoRa node 151 (ROM 256kB, RAM 32kB). We evaluate
its performance extensively (Section 7). Results show that:

• TinyNet allows interoperability among heterogeneous radio
technologies, including 802.15.4, BLE, LoRa andWiFi, at or above
the network layer (Section 7.1).We also illustrate that supporting
TCP/IP is feasible for many commonly used embedded systems.

For example, our results show that (1) for the implementation of
a single radio, TinyNet consumes 6.146–6.588 KB in RAM and
48.013–51.630 KB in ROM; (2) for the implementation of three
radios, it consumes up to 10.367 KB in RAM and 77.411 KB in
ROM. This fits in many widely used low-end embedded systems
such as Arduino ZERO (ROM 256KB, RAM 32KB), STM32F103
(ROM 512KB, RAM 64KB), CC2650 (ROM 128KB, RAM 20KB),
etc.

• TinyNet simplifies new protocol design by module composition.
Two newly proposed protocols (Rateless BLE and RPL over
LoRaWAN) can be easily composed by selecting existing
modules in TinyNet (Section 5).

• In terms of code size and memory footprint, TinyNet achieves
significant reduction compared with two existing network
stacks—Tencent stack (stack implementation in TencentOS
Tiny [49]) and GNRC (stack implementation in RIOT [15]).
Specifically, TinyNet occupies 39.9% less code size, and 11.2%
less memory footprint compared with Tencent stack, and 45.5%
less code size and 9.9% less memory footprint compared with
GNRC (Section 7.3).

• TinyNet achieves better or comparable performance in terms
of communication delay and energy efficiency compared with
Tencent stack and GNRC. (Section 7.4 and Section 7.5).

We believe TinyNet would be an excellent experimental platform
that will allow the research community to experiment broadly and
deeply in order to investigate important questions that arise when
scaling up IoT networks as well as rapidly developing new protocols
from the ground up. For example, in the smart home applications,
by enabling RPL and multi-hop over BLE, hundreds of BLE nodes
in different rooms can be connected to the Internet via a single BLE
gateway. Researchers can also seek for a variety of opportunities
to optimize the end-to-end network performance.

2 Motivation

We study several real-world scenarios and use cases to illustrate the
need for a lightweight, modular and unified network architecture
for IoT.

Motivation for unification (device control and remote

monitoring). Many IoT devices have already been deployed in
homes. People can remotely control the IoT devices, e.g., turn

249

TinyNet: a Lightweight, Modular, and Unified Network Architecture for the Internet of Things MobiSys ’22, June 25–July 1, 2022, Portland, OR, USA

on a smart LED, through a specific app that interacts with the
manufacturer’s cloud. Devices without IP support are hidden
behind the cloud and cannot be accessed without the translation
and relaying of cloud. This has encouraged IoT applications to
develop as vertically-integrated silos, where devices cooperate only
within an individual application or a particular manufacturer’s
ecosystem. As such, people cannot control the devices without
installing specific apps. Moreover, it introduces difficulties for cross-
company device communication and prevents many interesting
applications requiring multi-device interactions. On the other hand,
allowing devices to seamlessly communicate with each other, i.e.
machine to machine (M2M) communication, can have a wide range
of application scenarios. For example, in the remote monitoring
scenario, a screen display can directly connect to an IP camera for
retrieving the video stream.

If devices are equipped with a unified stack and can fully
interoperate, we can embrace the fast-growing Web technologies
and can access the devices through a unified interface, e.g., RESTful
APIs. An appealing scenario we can envision is the semantic web of
things described in [21]. In this scenario, each IoT device can self-
describe its capabilities in standardized ways. Applications can then
search for IoT devices (e.g., in their local area) and access/control
them via the Web. We will eventually enter the era of the Web of
Things.

Motivation for lightweight implementation (memory short-

age). Many IoT devices are equipped with multiple radios, e.g.
one energy-efficient radio for service discovery and one high-
throughput radio for data transfer [4]. [56] gives a detailed
description of 13 use cases across regions combining WiFi and
LoRaWAN. Another recent trend is the increasing use of multi-
standard radio chips, which are rapidly penetrating the IoT
device market. For example, the CC2650 chip supports two
radio standards, i.e., BLE and 802.15.4, through a single radio
interface. Multi-standard chips can also simultaneously offer
multiple communication interfaces by carefully consolidating
multiple radio stacks [26]. However, supporting multiple radio
stacks requires a large amount of memory. For example, it requires
over 128kB of program memory by simultaneously supporting
802.15.4 and BLE with RIOT GNRC (see Section 7.3). It prevents its
use on resource-constrained devices such as CC2650 and CC1350
(both with 128kB program memory).

If we carefully optimize and modularize the network stacks for
different radios, common modules can be reused by many radio
stacks, thereby reducing the total memory consumption.

Motivation for modularity (protocol innovation). Many
IoT systems are deployed in application-specific scenarios and
have a heavy need for optimization or re-implementation of some
functionalities. For example, a BLE network with long-distance
communication may require adding link-layer coding (e.g. Rateless
coding) and multihop transmission (e.g. RPL) functionalities for
improving the network performance. Unfortunately, existing
implementations are bound to specific radio technologies, e.g. there
are no available implementations for BLE, although there exist
rateless coding and RPL implementations for ZigBee [55]. The
creation of new protocols thus requires more effort to reorganize
functionalities or even reimplement them from scratch. The lack of

modularity also causes the porting of applications onto different
protocols to become non-trivial.

If there exists a carefully designed modular network architecture
for heterogeneous radio technologies, the creation of new protocols
will be greatly simplified.

Motivation for building universal gateways. For an IoT
device to connect to the Internet, a gateway is essential. Today,
many IoT devices require application-layer gateways. Therefore,
people need to buy different gateways for different IoT devices, with
application-specific protocols installed in the gateway. In contrast,
other networks are seamlessly interoperable with the rest of the
Internet. For example, accessing a new web application from a
laptop does not require any new functionality at the Wi-Fi access
point.

If there exists a lightweight, unified and Internet-compatible
network stack installed at each IoT device, the gateway design
would be greatly simplified by avoiding application-specific
considerations. Ultimately, we can create universal multi-radio
gateways supporting a variety of IoT devices from different vendors.

3 TinyNet Architecture

Figure 1(c) shows the network architecture of TinyNet where the
boxes indicate different modules. The current implementation of
TinyNet unifies three radio technologies, including 802.15.4, BLE,
and LoRa. On top of PHY layers, there are dedicated MAC protocols,
e.g., BLE MAC [20], LoRaWAN [8] and LPL (Low Power Listening)
MAC [11]. It is worth noting that TinyNet also allows LoRa to reuse
the MAC protocols originally designed for 802.15.4 PHY, i.e., RDC
(Radio Duty Cycle Control) and LPL MAC. An important part of
TinyNet is located at L2.5, i.e., an abstraction layer between the link
and network layer.

Why exists L2.5. The goal of introducing a layer 2.5 in
TinyNet is to provide a unified interface to a wide range of
data link and physical layer technologies that allows network
layer and the above protocols to operate efficiently through
link independent optimizations. Positioning at L2.5, we allow
multiple link technologies (e.g., LoRa, 802.15.4, Z-wave, etc) and
multiple network protocols (e.g., RPL [57], WirelessHART [46], BLE
mesh [39], etc) to coexist and evolve independently of each other
in the same way the IP layer allows transport protocols and link
layer technologies to evolve independently in today’s Internet.

Modules inside L2.5. In designing L2.5, we first start from SP
[43], an existing L2.5 layer to include the neighbor management and
packet queue (i.e., message pool in SP).While these twomodules are
useful for providing common services to the network layer. They
are, however, insufficient since they are lacking support for key
services TinyNet wants to provide, i.e., (1) support for IPv6 [25] and
6LoWPAN [24] which forms the basis for network interoperability;
(2) support for multihop communication which is valuable for
increasing the wireless communication range; (3) reliability.

Table 1 summarizes the relationship between the desired
services and the L2.5 modules that provide them. To further
increase code reuse, we abstract two additional modules, packet
transmission and packet reception to deal with different packet
formats, fragmentation and coding mechanisms. Some modules,

250

MobiSys ’22, June 25–July 1, 2022, Portland, OR, USA W. Dong et al.

Table 1: Services provided by, and modules implemented in

TinyNet.

Services Modules

Common network services Neighbor management, Packet queue
Support for different link
technologies

BLE adaptation, LoRaWAN adaptation,
LPL adaptation

Support for 6LoWPAN Header compression, Fragmentation
Multihop support Packet relay, Addressing module
Reliability Link layer coding

802.15.4 6LoWPAN

802.15.4 PHY

LPL MAC
RDC

LPL Adaptation

Fragmentation Header Compression

BLE PHY

BLE MAC

BLE 6LoWPAN

IPV6

RPL over LoRaWAN

LoRa PHY

LoRaWAN MAC

LoRaWAN
Adaptation

RPL Packet Relay

BLE PHY

BLE Adaptation

RPL over BLE

Packet Queue

Packet Transmission

Packet Reception

Addressing Module

Neighbor Management

SP (Sensor Protocol)

BLE MAC

BLE Adaptation

Figure 2: Basic decomposition of four protocols. Common

functions can be shared, reducing the total number of

components in the system.

Packet relay Packet
transmission

Packet queue

Optional modules
Neighbor management

Packet
reception

Addressing module

Adaptation (BLE, LoRaWAN, LPL, etc.)

MAC layer

Network layer

fragment
compress

coding
merge

...

Data packets Control packets Function calls

Figure 3: Key procedures for data and control packets.

e.g., fragmentation and header compression, are necessary for
supporting 6LoWPAN and IPv6. Some other modules, e.g., BLE
adaptation and LoRaWAN adaptation, are necessary for unifying
different radio technologies. By carefully abstracting common
functionalities, many modules of TinyNet can be reused in
various protocols. For example, the fragmentation and the header
compression module can be used for both BLE 6LoWPAN and
802.15.4 6LoWPAN (see Figure 2).

Compared with earlier efforts [13, 29, 31, 43], TinyNet clearly
goes a step further—we have shown in Section 5 that earlier
protocols, e.g., SP [43], RPL-over-BLE [31] can be easily created by
selecting specific modules in TinyNet. More importantly, TinyNet
can compose new protocols, e.g., RPL-over-LoRa and rateless BLE,
which cannot be easily created by all prior architectures. Another
key difference is that while all existing architectures focus on
one specific radio technology, i.e., 802.15.4 [13, 29, 43] or BLE
[31], TinyNet intends to design an L2.5 that works on many
different radio technologies. Achieving the abovementioned salient
features requires more systematic considerations in designingmany
TinyNet modules (Section 4).

Data and control packet procedures. Figure 3 shows the

procedure of forwarding data and control packets from the network
layer. In data plane, a packet first goes through the packet relay
module which allocates the transmission slots. Then the packet
transmission module interacts with the packet queue module to
schedules packet transmission. Finally, the MAC adaption module
sends the data packet on the radio interface. In control plane, most
of the steps are similar excluding several differences: at step 2©, the
packet relay module relies on the abstracted APIs of the adaptation
layer to synchronize the slots for advertising and scanning.

4 Module design

We present the design details of some key modules in TinyNet.
Figure 1(c) shows a list of modules we have implemented in TinyNet,
including BLE/LPL/LoRaWAN adaptation modules, addressing
module, neighbor management module, packet relay, etc. The full
descriptions of these modules can be found in our technical report
[48].

4.1 MAC and MAC-adaptation modules

The adaption module is the key for TinyNet to incorporate many
radio technologies. TinyNet introduces two layers to achieve this
unification.

First, TinyNet’s MAC presentation layer intends to describe
each MAC’s full functionalities. It is a thin wrapper encapsulating
other MAC protocols implemented in different stacks. We further
propose three abstractions, i.e., property, services, and events
to describe each MAC’s native functionalities. Property means
public data or parameters which can be set or get by other
modules. Services mean functions that can be invoked by other
modules while events mean callback functions so that other
modules can be notified of the occurrence or completion of the
corresponding events. Figure 4 (a)–(c) show example data structures
for 15.4 LPL MAC, BLE MAC and LoRaWAN. There are common
fields such as kind, name, and MTU size. There are also specific
fields for each different MACs. For example, for 15.4 LPL MAC,
localWakeupInterval is used to control the duty cycle of the
current node while the remoteWakeupInterval is used to set the
preamble length in order to wakeup the receiver. For BLE MAC,
parameters such as scanInterval, advertiseInterval are used
to control the BLE MAC specific behaviors.

Second, TinyNet’s MAC unification layer intends to present
MAC independent interfaces to upper layers. TinyNet has three
MAC adaptation modules: BLE adaptation, LoRaWAN adaptation,
and LPL adaptation. These modules encapsulate radio specific
functionalities and provide unified interfaces, i.e., uniMAC, to upper
layers. Figure 4(d) shows example data structure for uniMAC which
implements essential functions at layer 2.5. It is worth noting that
as long as we implement the uniMAC interface for other radio
technologies, we can incorporate those radios into our TinyNet
architecture. On the other hand, the uniMAC interface does not
prohibit the MAC-specific optimization. The upper layer protocols
can still invoke the MAC-specific interfaces for this optimization.

4.2 Packet queue

The packet queue module is responsible for buffer management and
packet scheduling. TinyNet provides FIFO packet scheduling and

251

TinyNet: a Lightweight, Modular, and Unified Network Architecture for the Internet of Things MobiSys ’22, June 25–July 1, 2022, Portland, OR, USA

struct lpl802154mac{

 kind_t kind;//lora, BLE or 15.4
 uint8_t name, channel, mtu;
 uint8_t localWakeupInterval;
 uint8_t remoteWakeupInterval;
 ...
 msg_t *msg;
/************service***********/
 uint8_t (*init)(void);
 uint8_t (*send)(msg_t *msg);
 uint8_t (*getLqi) (msg_t *msg);
 uint8_t (*getRssi) (msg_t *msg);
 ...
/*************event************/
 void (*sendDone)(uint8_t
 evtType, msg_t *msg);
 ...
};

struct blemac{
/************property**********/
 kind_t kind;//lora, BLE or 15.4
 uint8_t name, channel, mtu;
 uint16_t scanInterval;
 uint16_t advertiseInterval;
 ...
 blem_t *msg;
/************service***********/
 uint8_t (*init)(void);
 uint8_t (*send)(blem_t *sdu);
 uint8_t (*adv)(addr_t *addr);
 uint8_t (*getRssi)(blem_t *msg);
 ...
/*************event************/
 void (*sendDone)(uint8_t
 evtType, blem_t *msg);
 ...
};

struct lorawanmac{
/************property**********/
 kind_t kind;//lora, BLE or 15.4
 uint8_t name, channel, mtu;
 class_t class;
 uint8_t joinType;//ABP or OTAA
 ...
 lmsg_t *msg;
/************service***********/
 uint8_t (*init)(void);
 uint8_t (*send)(lmsg_t *msg);
 uint8_t (*join)(uint8_t
 joinType);
 ...
/************event************/
 void (*sendDone)(uint8_t
 evtType, lmsg_t *msg);
 ...
};

(a) 15.4 LPL MAC (b) BLE MAC (c) LoRaWAN MAC

struct unimac{
/************property**********/
 kind_t kind;//lora, BLE or 15.4
 uint8_t name, channel;
 uint16_t mtu;
 ...
 unimsg_t *msg;
/************service***********/
 uint8_t (*init)(void);
 uint8_t (*send)(unimsg_t *msg);
 uint8_t (*getLinkQuality)(
 unimsg_t *msg);
 ...
 /************event************/
 void (*sendDone)(uint8_t
 evtType, unimsg_t *msg);
 ...
};

(d) uniMAC
Figure 4: Example data structures for 15.4 LPL MAC, BLE MAC, LoRaWAN and uniMAC.

8 9 10 38 11 12 13 14 15

14 15 16 17802.15.4
channel

BLE
channel

802.15.4

BLE

P1

(b) Concurrent transmissions
channel 2, 5, 8

 channel 15

(c) Sequential transmissions

(a) Conflict graph

P1

P1

802.15.4

BLE

P2

channel 10, 38

 channel 15

P2

P2

Figure 5: Multi-radio packet scheduling in TinyNet. (a)

Conflict graph. (b) an example for concurrent transmissions.

(c) an example for sequential transmissions.

priority-based packet scheduling for the single radio stack. TinyNet
also provides a unique conflict graph-based packet scheduling
approach for multi-radio platforms to avoid transmitting on the
same ISM band.

Conflict graph-based packet scheduling: For an IoT node
with 𝑛 radios, 𝑛 packet queues are required, one for each radio.
When a packet is to be transmitted, TinyNet first determines which
radios it should be transmitted on. It is possible that a packet will be
transmitted on all radios, e.g., when a gateway with multiple radios
broadcasts packets to all IoT nodes with heterogeneous radios.
In an ideal case, TinyNet can transmit packets in different packet
queues concurrently since TinyNet is currently based on multi-radio
platforms. However, it is not always appropriate since there could
be interference if the radios operate in the same frequency band and
the selected channels overlap with each other. For example, 802.15.4
and BLE both operate on the 2.4GHz ISM band. 802.15.4 channel 15
overlaps with BLE channel 10 and 38. Therefore, the above 802.15.4
channel and BLE channels cannot be used concurrently.

TinyNet adopts the following approach (see Figure 5) to
maximize concurrency while avoiding conflicts.

• There is a conflict graph where nodes represent different
channels of each radio and an edge between a pair of nodes
represents a conflict in between.

• If a packet is to be transmitted, it is pushed to appropriate queues.
For the example shown in Figure 5, packet P1 is pushed to both
the 802.15.4 queue and BLE queue since it should be transmitted
on both radios.

• The above push operation triggers the packet transmission
events. If the channels of two packets overlap, TinyNet avoids
concurrent transmission by setting the busy flag in the first
transmission event and avoids entering the second transmission
event by checking the busy flag.

There are two points worth emphasizing here. First, TinyNet
tries to avoid external WiFi interference. It selects 802.15.4 channel
15 which does not overlap with any WiFi channels. In addition,
it relies on BLE’s built-in channel hopping mechanism to avoid
interference with WiFi. Second, our multi-radio packet scheduling
algorithm is scalable for incorporating more radios (e.g., WiFi at
2.4GHz, LoRa 2.4GHz, etc.) in the future. The basic scheduling
algorithm remains the same as long as the conflict graph is revised
to consider more radio channels.

4.3 Neighbor management module

TinyNet provides a unified neighbor table with the following
format: neighbor address, radio type, radio-on time, radio-off
time, link quality, and channels. The channel entry is used for
channel hopping based protocols for recording the synchronized
transmission channels.

A key function provided by neighbor management is neighbor
discovery. For single channel based protocols such as 802.15.4,
neighbor discovery is relatively simple and we can borrow
existing approaches for Low-Power-Listening based protocols [41].
The design for channel hopping based protocol is challenging
considering flexibility, code reuse, compatibility, and efficiency.

For example, the BLE built-in neighbor discovery mechanism
has limitations that require a redesign. There are two roles, i.e.,
central and peripheral in BLE. A central can discover non-connected
peripherals in its neighborhood. A peripheral broadcasts packets
with a default advertising period of 20ms. In one advertisement
duration, three packets are transmitted consecutively on channels
37, 38, and 39. A central periodically performs channel scans, i.e.,
listening on one advertising channel in turn, to receive advertising

252

MobiSys ’22, June 25–July 1, 2022, Portland, OR, USA W. Dong et al.

38

37
lnormal

m

A

B

A finds B

B finds Aladv
D

linta lb

lscan

Scan Transmission

39

38

ladv
lscan

Figure 6: Channel hopping based neighbor discovery in

TinyNet. Two nodes can discover each other when node A

performs channel scan while node B is advertising.

packets from potential peripherals. However, when a peripheral
connects to a central, it can no longer discover other central or
peripheral devices. Similar to BLE, LoRaWAN also intends for
single-hop communications and uses channel hopping mechanisms.
Different from BLE, there is no neighbor discovery in LoRaWAN
since the gateway is able to listen and receive packets at all channels.

To address the above limitation, we adopt a fast bi-directional
neighbor discovery for channel hopping based protocols including
BLE and LoRaWAN. An ordinary IoT node, say 𝑖 (e.g., BLE
peripheral or LoRaWAN client), has three operating modes
including channel scan, normal operation, and advertisement.

• The channel scan mode is used for node 𝑖 to discover other
neighboring nodes and its duration is denoted as 𝑙scan.

• The normal operation is used for normal data transmission (e.g.,
connection events in BLE) or sleep to save energy. The normal
operation mode always starts after the channel scan mode. Its
duration is denoted as 𝑙normal. A normal time slot is used for
channel scan followed by normal operation and its duration
equals to 𝑙scan+𝑙normal.

• The advertisement mode is used in order to let others to discover
node 𝑖 . In the advertisement mode, a node can periodically
broadcast advertising packets with different channels. An
advertising time slot is used for advertisement and its duration
is denoted as 𝑙adv. (𝑙adv = 𝑙scan+𝑙normal).

For an ordinary node 𝑖 , an advertisement time slot appears every
𝑚 (e.g.,𝑚 = 10) time slots as shown in Figure 6. If the advertisement
time slots of two nodes appear at the same time, the two nodes
cannot discover each other. The neighbor discovery module in
TinyNet tries to avoid this situation by randomly allocating the
positions of advertisement time slots.

The above approach has the following features. First, it inherits
the design for BLE and thus can reuse a portion of code in
its neighbor discovery module. Second, it enhances the original
BLE neighbor discovery in the sense that an ordinary node can
discover neighboring nodes and it can also be discovered by other
nodes. At the same time, it is compatible with the original BLE
neighbor discovery mechanism, i.e., a legacy non-connected BLE
peripheral can be discovered and connected to TinyNet-enabled
BLE nodes. Finally, it works for both BLE and LoRaWAN with
different configurations.

4.4 Packet relay module

The packet relay module is important to enable multi-hop wireless
routing. For 802.15.4 radio, packet relay is relatively simple since it
uses a single channel. For BLE and LoRaWAN, however, there is no
direct support for packet relaying since both radios are originally
targeted for single-hop communication scenarios.

TinyNet employs an automatic synchronization approach for
channel hopping based protocols in order to let the relay node
receive packets from downstream nodes. Since both BLE and
LoRaWAN use channel hopping, it is necessary to allocate
reception slots and synchronize transmission/reception behaviors
between the sender and the receiver. TinyNet automatically
allocates the reception slots during rendezvous points where the
downstream nodes perform channel scan and the relay node
performs advertising. The downstream nodes can request one
or more transmission slots (or a connection event with variable
duration in the BLE term), and the relay node coordinates the
allocation and confirms the final decision to the downstream nodes.

In order to optimize the performance for multiple continuous
packets, which is common for the case when a large packet is
fragmented into many smaller ones, there is a default delay-after-
receive mechanism for all three radio technologies. A relay node
will stay in the receiving state for a while after receiving a packet,
attempting to receive more subsequent packets. However, there is
a limit, i.e., it cannot exceed the allocated time slot or the length of
a connection event.

5 Protocol Composition

In this section, we show that various existing protocols can be
composed from the modules provided by TinyNet. In addition, we
can also compose new protocols for better performance. Table 2
provides a summary of two existing protocols and two new
protocols as well as their corresponding modules.

RPL over BLE. ALBER [31] is an adaptation layer for enabling
RPL over BLE. RPL is a multi-hop wireless routing protocol
based on 6LoWPAN which compresses IPv6 headers to meet the
resource constraints of IoT nodes. For header compression, the
packet fragmentation module and the header compression module
are necessary. The header compression module also provides
functionality for packet decompression. To provide multi-hop
routing in RPL, neighbor discovery is required. Channel hopping
based neighbor discovery is selected since ALBER is designed
for BLE which is channel hopping based. We use RTT-based link
estimation for ALBER. The packet relay module is necessary for
forwarding packets. The packets are scheduled in FIFO. ALBER
reuses BLEMAC layer, and therefore the basic unicast and broadcast
services are used.

SP. SP [43] is an L2.5 layer protocol designed for 802.15.4 based
sensor networks. SP allows link layers and network protocols to
cooperate by maintaining and exposing a shared neighbor table
and message pool. Priority-based packet scheduling is utilized so
that urgent packets, e.g., control packets, can get higher priority in
SP. SP uses the basic unicast and broadcast services.

Rateless BLE. TinyNet allows us to create protocols with coding
support which is especially important in noisy environments. Rate-
less BLE provides rateless coding support in BLE communications
so that BLE communication can be more robust with external
interference. We use the LT codes implementation in the link
layer coding module. Reliable transmission services for unicast,
multicast and broadcast are used for packet retransmissions. The
multicast group addressing module is required to support multicast
transmission and reception.

253

TinyNet: a Lightweight, Modular, and Unified Network Architecture for the Internet of Things MobiSys ’22, June 25–July 1, 2022, Portland, OR, USA

Table 2: Decomposition of existing and composition of new network protocols.

Protocol
Fragment/ Hdr

Compress
Packet

Transmission
Neighbor

Management
Addressing
Module

Link Layer
Coding

Network
Layer

Existing Protocols

RPL over
BLE [31]

Fragment
+ Hdr Compress

Packet
Relay

FIFO
Link Est.

+ Neighbor Dis.
Unicast

Addressing
— RPL+IPv6

SP [43] — —
Packet
Priority

Link Est.
+ Neighbor Table

Unicast
Addressing

— —

New Protocols

Rateless
BLE

— —
Reliable

Transmission
FIFO —

Multi. Group Addr.
+ Uni. Addr.

Rateless
Code

—

RPL over
LoRaWAN

—
Packet
Relay

Uni./Broad. FIFO
Link Est.

+ Neighbor Dis.
Unicast

Addressing
— RPL+IPv6

(a) CC2650 Launchpad (b) Heltec LoRa Node 151 (c) Gateway
Figure 7: IoT nodes for the implementation.

RPL over LoRaWAN.With TinyNet, we can not only compose
ALBER which enables multi-hop routing based on BLE, but also
compose new protocols enabling multi-hop wireless routing based
on LoRaWAN. RPL-over-LoRaWAN uses RPL for multi-hop routing.
Therefore, the IPv6 and RPL modules are selected. We can use
PRR based link estimation since the underlying MAC protocols in
LoRaWAN provides packet reception status. For neighbor discovery,
we use channel hopping based neighbor discovery (Section 4.3)
since LoRaWAN is also channel hopping based. The packet relay
module is required in order to allocate the time slots for packet
transmission and reception.

6 Implementation

Hardware and OSes. We implement TinyNet on CC2650 (ROM
128kB, RAM20kB,multi-standard radio chip supporting 802.15.4/Zig-
Bee and BLE) and Heltec IoT LoRa node 151 (ROM 256kB, RAM
32kB). We have also built a gateway comprising of a Raspberry Pi
3 (RPI) [44] connected with two CC2650 chips and one Heltec IoT
LoRa chip. Figure 7 shows these three types of nodes.

We have originally implemented TinyNet on Contiki OS 3.0 since
Contiki OS has a lightweight implementation of protocols TinyNet
relies on, e.g., 6LowPAN, uIP. To see the portability of TinyNet,
we have also ported our implementation to RIOT [15] which also
supports a rich set of protocols.

Implementation on Contiki OS. We reuse some existing
works in TinyNet, e.g., BLEach [47] for BLE MAC, uIP [10] stack
for the network layer and transport layer (see Table 3). New
modules are implemented in TinyNet to support a wide range
of radios. For example, the packet relay module schedules the
transmission/reception slot for downstream/upstream nodes to
forward packets. To this end, TinyNet extracts the timer variable in
BLEach and provides a unified interface to L2.5. To let BLE nodes
can discover each other even when they are connected, we also
need to carefully deal with the parameter confliction (e.g., hopped
channel), and reschedule states of BLE, e.g., connecting the scan
state to the advertisement state. About 2,600 lines of C codes are
added to implement the new modules at the L2.5.

Table 3: Module implementation in Contiki and RIOT

Contiki OS RIOT

Reused
modules

uIP [10],
RPL [12],
Sicslowpan [12],
RDC [12],
BLE MAC [47]

GNRC [18],
GNRC LoRaWAN [18],
BLE MAC(Nimble [3])

Modified
modules

BLE adaptation,
Addressing module,
LPL MAC,
LoRaWAN MAC

Addressing module,
LPL MAC

Newly
added

modules

Link layer coding,
Packet Relay,
Neighbor management,
Packet queue,
LoRaWAN adaptation,
LPL adaptation

Packet relay,
Packet queue,
Neighbor management,
RDC,
Link layer coding,
LPL adaptation,
BLE adaptation,
LoRaWAN adaptation

Table 4: Code size and memory footprint (B) of TinyNet on

CC2650 with support for BLE and 802.15.4

Contiki OS RIOT
Total code size 60,434 95,445

Total memory (static) 8,174 10,632
Total memory (dynamic) 0∼6,162 0∼5,372

Implementation on RIOT. For the implementation on RIOT,
we reuse its GNRC protocol stack and NimBLE stack (see Table 3).
We need to modify the addressing module and LPL module (which
was originally designed for TinyOS [41]) to make them work. The
newly added module, e.g., packet relay, packet queue and neighbor
discovery, can mostly be adapted from the implementation on
Contiki OS. About 1,500 lines of codes are required to make TinyNet
work on RIOT. Table 4 shows the code size and memory footprint
for the implementation of TinyNet on CC2650 with support to two
radio technologies—802.15.4 and BLE.

Optimization techniques on IoT devices. We choose existing
lightweight implementations for TinyNet, e.g., uIP in Contiki
OS, BLE MAC in BLEach [47]. We have employed zero copy
technique [58] to save memory consumption: A buffer named
packetbuf is used to pass through data packets from the network
layer to L2.5. A circular buffer is used for the packet receive queue
to re-assemble packets that arrived out of order.

Special considerations for the gateway. We have built a
gateway node comprising RPI and three radio chips. The hardware
performance of RPI (1.2 GHz CPU, 1 GB RAM [44]) is generally
more powerful than the radio devices (48 MHz CPU, 28 kB RAM
[6]). TinyNet is currently designed to let L2.5 and the above layers
run on the RPI, while the link layer and the lower layers run on the
radio devices. RPI and the radio devices are communicated with

254

MobiSys ’22, June 25–July 1, 2022, Portland, OR, USA W. Dong et al.

B1
Z2

Z4

Gateway LoRa 802.15.4 BLE
L5 L3

L2

L1
L4

L6

11
m

18m

B4

B2

B5

B6

1500m

50
0m

Z6

Z5

B3

Z1
Z3

Figure 8: A mixed indoor and outdoor testbed consisting of

heterogeneous IoT nodes.

Table 5: Notations for different network topologies

Notation Network topology Notation Network topology

ZGB ↔ Gate
way
GateGG
waywayyayywayyyyyy

↔ ZGBB ↔ Gate
way
GateGG
wayayaywaywayayyyy

↔ ↔

ZGL ↔ Gate
way
GateGG
wayyawayayyyy

↔ ZGLL Gate
way
GateG
wayayaywayyyyaayyy

↔ ↔

BGL ↔ Gate
way
GateG
wayawaywayyyyayyay

↔ —— ——

a standard protocol, i.e., Serial Line Internet Protocol (SLIP) [1].
Multiple radio devices are connected through the serial ports and
maintained by the co-thread mechanism of Contiki OS. It is worth
noting that our implementation can also be ported to COTS multi-
radio gateways which are already on the market, e.g., Samsung
Connect Home [45], Google WiFi AP [19], and Cisco Catalyst
Series [7].

7 Evaluation

In this section, we perform a systematic evaluation of TinyNet. We
compare TinyNet with two existing IoT network stacks, i.e., Tencent
stack implemented in TencentOS Tiny [49] and GNRC implemented
in RIOT [15]. We have mainly used a mixed indoor and outdoor
testbed for the evaluation (See Figure 8). We deploy the gateway
node in our laboratory. Six LoRa nodes are deployed outdoor in
a 500m by 1500m area on the roof of buildings. Six BLE and six
802.15.4 nodes are deployed indoors. The transmission power of
IoT nodes can be configured to form different topologies. Table 5
shows the notation of each scenario and the corresponding network
topology. Different IoT nodes communicate with each other using
different protocols, e.g., UDP and TCP. When not specified, the data
transmission is one packet every five seconds with a user payload
length of 50 bytes. We record packets transmission and reception
timestamps for the later analysis.

7.1 Interoperability

TinyNet can enable new interoperatibility scenarios that previous
works cannot easily provide. In this subsection, we provide
representative use cases of TinyNet in different scenarios.

ZigBee-BLE communication using TCP. Figure 9 shows the
use cases of TCP among two CC2650 (configured to use ZigBee and
BLE, respectively) across a gateway. These two nodes, although use
different radio technologies, can use the standard socket interface,
e.g., connect(), accept(), send(), recv(). The round-trip time is
roughly 275.2ms.

WiFi-BLE using CoAP and RESTful API. Figure 10 shows
the use case of RESTful API over CoAP. In this case, a CC2650

Figure 9: ZigBee-BLE communication using TCP.

Figure 10: WiFi-BLE using CoAP and RESTful API.

node uses BLE to connect to a gateway (RPI) which turns on the
WiFi hotspot and thus can transmit or receive WiFi packets with a
laptop. In this case, a laptop or smartphone can turn on/off an LED
on CC2650 across a gateway as long as the IoT node implements
and exposes the RESTful API. In the future, when IPv6 is supported
by the global Internet, a laptop/smartphone, no matter where it is,
can remotely control IoT devices supporting TinyNet. The round-
trip time is roughly 242.1ms which is slightly lower than TCP. This
is because CoAP, although inspired by HTTP, was designed to use
UDP instead of TCP.

ZigBee-BLE, LoRa-ZigBee, LoRa-BLE using TCP, UDP,

andMQTT. We evaluate the delay of TinyNet in the above different
scenarios. In all scenarios, the sender sends a packet of 50 bytes
payload to the receiver per second. We turn the radio always on
for the 802.15.4 link and the connection interval of BLE is set to 50
ms. We have also compared with the vertically-integrated approach
in which nodes transmit/receive link-layer packets to/from the
gateway and the gateway performs protocol conversion.

From Figure 11(left), we can see that: (1) TinyNet allows
interoperability among heterogeneous nodes at the network layer
and the above layers. (2) The delays of TinyNet-TCP are only
slightly higher than those of TinyNet-UDP. This is because that the
TCP connection is maintained during the entire experiment and the
connection establishment overhead is amortized tomultiple packets.
(3) Compared with the MAC+protocol conversion approach, all
approaches of TinyNet introduce additional delays due to the
overhead of processing upper-layer protocols. Specifically, the delay
increase of TinyNet-TCP is 13.1% which is comparable with 15.9%
delay increase of prior work—TCPlp [30] over 802.15.4 links. For
traffic from/to LoRa, the delay overhead is larger since LoRa has a
much lower data rate than ZigBee and BLE.

Multihop wireless communication using MQTT. Figure 11
shows the delay performance from an 802.15.4 node to other nodes
several hops away through a gateway. We see that: (1) TinyNet
enables communication via MQTT among heterogeneous nodes,
even if they are several hops away. (2) The communication delay
increases with the increasing number of hops.

255

TinyNet: a Lightweight, Modular, and Unified Network Architecture for the Internet of Things MobiSys ’22, June 25–July 1, 2022, Portland, OR, USA

ZGB LGZ LGB
0

200

400

600

De
la

y
(m

s)

 MAC+protocol conversion
 TinyNet-UDP
 TinyNet-TCP
 MQTT

ZGB
ZGBB

ZGBBB ZGL
ZGLL

ZGLLL
0

500

1000

1500

De
la

y
(m

s)
Figure 11: Left: Delay between heterogeneous IoT nodes

through a gateway. Right: MQTT delay from a 15.4 node

to BLE/LoRa nodes multiple hops away. See Table 5 for

notations in the x-axis.

L1 L2 L3 L4 L5 L6
Node ID

0

0.2

0.4

0.6

0.8

1

PD
R

LoRaWAN
RPL over LoRaWAN

10 20 60 90
WiFi interface traffic (Mbps)

0

0.5

1

1.5

2

De
lay

 (s
)

BLE
rateless BLE

Figure 12: Left: Packet delivery ratio (PDR) for different

nodes. Right: Delay for BLE and rateless BLE.

Summary. In IoT, heterogeneous radio protocols co-exist
today, making the integration of data and services from various
devices extremely complex and costly [21]. Bringing IP to each
device makes the integration across systems and applications
much simpler, regardless of the underlying radio technologies
and network topologies. TinyNet enables universal connectivity
between heterogeneous devices using standard socket interfaces as
well as the upper-layer web technologies.

7.2 Benefits of modularity and new protocol

composition

We evaluate the performance of two new protocols which can be
easily created by composing different modules in TinyNet.

RPL over LoRa. Recent studies [34] have shown that the LoRa’s
typical communication range is still limited to 0.1-2 km, due to
many practical factors such as obstacles, multipath fading, etc.
Multihop communication is very useful to further extend LoRa’s
communication range.

We conduct an experiment using the testbed shown in Figure 8.
Each LoRa node sends data packets to the gateway every two
minutes for 15 days. In this process, we adopt the default parameter
settings for all LoRa nodes, e.g., the transmission power is 13 dBm.
Figure 12(left) depicts the end-to-end packet delivery ratio (PDR)
for two protocols, i.e., the original LoRaWAN without multihop
support and the newly created “RPL over LoRa” protocol by
composing different TinyNet modules. We can see that: (1) With
LoRaWAN, the PDRs of individual nodes are relatively low: The
PDR of node 6 even drops to 0%, indicating that node 6 cannot
communicate with the gateway directly. (2) With RPL over LoRa,
the PDRs can be significantly increased. For example, the PDR of
node 6 increases to 64%. It is very useful that TinyNet’s modular
design allows reusing RPL for LoRa. The provided multi-hop
communication capability can significantly increase PDR without
deploying additional gateways.

Rateless BLE. With the increase of radio technologies, cross-
technology interference becomes a critical issue [22]. Rateless
coding is a common approach to achieving robust communication
in such situations. We conduct experiments based on the same
testbed. The gateway transmits one packet to the BLE nodes every
10 seconds in a multicast manner. Note that the multicast capability
of BLE is accomplished by using the advertising channel and the
addressing engine. We use a laptop placed close to the gateway to
generate WiFi traffic to interface with the BLE transmissions. On
the laptop, we use iperf3 to generate data traffic with varying bit
rates.

Figure 12(right) shows the average transmission delays under
varying WiFi bit rates. The transmission delay is measured as
the time duration between the sending time of a packet at the
gateway and its reception time at all BLE devices. We can see
that: (1) The transmission delay increases with the interference
increases due to the more packet retransmissions. (2) Rateless BLE
reduces transmission delays, especially under heavy interference.
For example, when the WiFi bit rate is set at 90 Mbps. The average
transmission delay of rateless BLE is 1.1s, compared with 1.7s for
the original BLE, resulting in a 35% reduction.

7.3 Code size and memory footprint

We quantify TinyNet’s code size and memory footprint on CC2650
and Heltec LoRa node 151 with its default implementation on
Contiki OS. Code size refers to the amount of program memory
(ROM) occupied by the networking code, while memory footprint
refers to the amount of RAM allocated. Both metrics are important
for IoT nodes. Several parameters may influence the memory usage,
e.g., the number of connected radio devices at the gateway, the
capacity of packet queue, etc. In the current evaluation, we set
the common settings according to existing works [43, 47], e.g., the
capacity of the packet queue is set to 36.

Table 6 shows each module’s code size and static memory
footprint for the full implementation of TinyNet on the gateway
node. We can see that: (1) For the implementations for a single radio,
TinyNet consumes 6.146–6.588 KB in RAM and 48.013–51.630 KB
in ROM. (2) For the implementation of three radios, it consumes up
to 10.367 KB in RAM and 77.411 KB in ROM.

Comparative study. Table 7 shows the code size and memory
footprint for several existing protocols and new protocols, using
the monolithic approaches (including Contiki OS uIP, Tencent
stack, and RIOT GNRC) and TinyNet’s modular approach. These
approaches implement the protocols on the same node (i.e.,
Raspberry Pi 3) for a fair comparison. For the existing protocols,
“802.15.4 6LP + BLE 6LP” refers to the implementation of 6LoWPAN
over 802.15.4 and BLE, which uses a separate implementation for
the two radio technologies.

Three observations can be made from Table 7: (1) For protocols
for a single radio (i.e., Contiki uIP and RPL-over-BLE), monolithic
approaches and TinyNet’s modular approach result in comparable

code size and memory footprint. Compared with the monolithic
approaches, TinyNet has an extra overhead to allow demultiplexing
and configuration among different modules. (2) For the protocol
for multiple radios (i.e., 802.15.4 6LoWPAN and BLE 6LoWPAN),

256

MobiSys ’22, June 25–July 1, 2022, Portland, OR, USA W. Dong et al.

Table 6: Code size and memory footprint of TinyNet.

Module Code size (kB) Memory (kB)

Transport layer
TCP 4.084 0.221
UDP 0.962 1.297

Network layer
IPv6 11.696 1.744
RPL 11.39 0.32

2.5 layer
Packet relay 0.486 0.085
Fragmentation & Compression 3.231 1.051
Addressing module 0.134 0.027
Link layer coding 1.523 0.742
Data Tx & Rx 0.370 0.064
Packet queue 0.312 0.256
Neighbor management 0.543 0.172
Adaptation 1.266 0.489

MAC layer
BLE MAC 6.750 1.089
LPL MAC & RDC 8.503 0.955
LoRaWAN MAC 11.270 0.903

PHY layer
BLE PHY 6.527 0.873
802.15.4 PHY 6.052 0.694
LoRa PHY 5.734 0.682

Total
TinyNet for BLE 48.013 6.588
TinyNet for 802.15.4 48.924 6.146
TinyNet for LoRa 51.630 6.222
TinyNet for multi-radios 77.411 10.367

Table 7: Code and memory size comparison of the

monolithic approach and TinyNet’s modular approach.

Protocol
Code Size (kB) Mem. Footprint (kB)
Mono TinyNet Mono TinyNet

Existing
Protocol

Contiki uIP 11.76 (uIP) 12.27 1.74 (uIP) 1.78

RPL over BLE
10.99 (uIP)
11.01 (GNRC)

11.39
0.30 (uIP)
1.62 (GNRC)

0.32

Co-exist.
Protocol

802.15.4 6LP+
BLE 6LP

8.40 (uIP)
8.46 (Tenc.)
9.32 (GNRC)

5.08
3.52 (uIP)
1.43 (Tenc.)
1.41 (GNRC)

1.27

New
Protocol

RPL over
LoRaWAN

- 43.14 - 5.97

Rateless BLE - 15.98 - 3.22

TinyNet achieves significant reduction. Specifically, TinyNet oc-
cupies 39.5%–45.5% less code size, and 9.9%–63.9% less memory
footprint compared with the three monolithic approaches. (3) For
new protocols (e.g., RPL over LoRaWAN, and rateless BLE), it is
expected that the code and memory sizes are larger than those of
the original protocols without the new functionalities.

7.4 Communication delay

Comparative study. We perform a comparative study on the delay
performance. We use BGL (see Table 5) for the network topology.
One BLE node sends a 20-byte packet to the LoRa node every
second. Tencent stack and GNRC have not implemented the TCP/IP
protocols upon LoRa. Therefore, we perform necessary protocol
conversions. Figure 13 shows the delays of TinyNet, Tencent stack
and GNRC between the BLE node and the LoRa node. Results
show that TinyNet achieves the best performance. This is because
the gateway does not have to wait for the uplink packets to
perform the downlink transmissions over the LoRa link thanks
to TinyNet’s automatic synchronization approach for allocating
transmission/reception slots.

RIOT GNRC
Tencent stack

TinyNet

0 100 200 300 400 500 600
Delay (ms)

BLE Gateway LoRa

Figure 13: Delay comparison with the existing work.

MQTT

TCP

IPv6 RPL

Fragmentation

Header comp.

Packet TX

Packet queue

LPL adap.

802.15.4 PHY

LPL MAC

MQTT

TCP

IPv6 RPL

Pkt merge

Header deco.

Packet RX

Packet queue (ZigBee/BLE)

LPL adap.

802.15.4 PHY

LPL MAC

Fragmentation

Header comp.

Packet TX

802.15.4 publisher
(72.7ms)

31.2ms

5.5ms

6.2ms 1.6ms

0.4ms

0.5ms

0.1ms

0.2ms

0.3ms

21.8ms

5.6ms

Broker(128.2ms)

MQTT

TCP

IPv6 RPL

Pkt merge

Header deco.

Packet RX

Packet queue

BLE adap.

BLE PHY

BLE MAC

BLE subscriber
(53.3ms)

6ms

36.6ms

3.4ms

1.0ms

1.2ms

1.2ms

0.3ms

0.7ms

1.0ms

5.6ms

2.3ms

BLE adap.

BLE PHY

BLE MAC

Packet relay Packet relay0.9ms

6.2ms

47.2ms

1.5ms

0.9ms

0.4ms

0.5ms

0.1ms

2.1ms

1.0ms
30.1ms
2.2ms

1.1ms

1.2ms

0.3ms

0.1ms
0.4ms

20.2ms
5.5ms

6ms

m

d

M

T

6

k

5

ke

ke

a

5

M

15 4 PHY 5

e

e

e

MQTT

E PHY B

v6

Pk

ea

Pa

c

B

B

B

802 1555 BBB

m

e

e

k

a

E

E

E

ac

ke

PL

1

P

1

Figure 14: Delay breakdown. An example of the 802.15.4

node publishes MQTT messages to the BLE node through

the multiradio gateway.

Breakdown. We present the delay breakdown in the ZGB
topology using the MQTT protocol. In this case, An MQTT
publisher transmits a 50-byte message to the gateway that is
running the MQTT broker. The published message is distributed by
the gateway to the subscribers that register the corresponding topic.
We turn the radio always on for the 802.15.4 link and the connection
interval of BLE is set to 50 ms. Although we use a specific topology
for connecting BLE and 802.15.4, note that TinyNet’s design allows
that the MQTT publisher/subscriber can be any of the three radio
technologies, i.e., BLE, LoRa and 802.15.4.

Figure 14 presents an example breakdown for the publisher
(802.15.4), the MQTT broker (gateway with 802.15.4 and BLE) and
the subscriber (BLE). The results are averaged from 300 MQTT
packets containing the same payload.We can see that the processing
delay on the gateway contributes the most to the end-to-end delay,
i.e., almost 51.5% of the overall delay.

7.5 Energy efficiency

We evaluate TinyNet’s energy efficiency in terms of radio duty
cycle. This is reasonable since the radio-on time largely determines
the lifetime of most IoT nodes [16].

We perform an evaluation in the BGB and ZGZ topology. The
packet payload size is 100 bytes and the sending interval is one
second. In the BGB scenario, a BLE node sends TCP packets to
another BLE node with different connection intervals. In the ZGZ
scenario, two 802.15.4 nodes use LPL MAC with different sleep
intervals.

We compare the radio duty cycle of TinyNet with Tencent stack
and GNRC. As a baseline, we also compare with the MAC+protocol
conversion approach, i.e., the devices only use the original BLE and
802.15.4 LPL MAC over the links and rely on the gateway for link
layer protocol conversion. Figure 15 and Figure 16 show the results.

257

TinyNet: a Lightweight, Modular, and Unified Network Architecture for the Internet of Things MobiSys ’22, June 25–July 1, 2022, Portland, OR, USA

50ms 100ms 300ms 500ms
0.0

0.3

0.6

0.9

1.2

R
ad

io
 D

ut
y

C
yc

le
 (%

)

Connection Interval

 MAC+Protocol Conversion
 RIOT GNRC
 Tencent Stack
 TinyNet

50ms 100ms 300ms 500ms
0.0

0.3

0.6

0.9

1.2

R
ad

io
 D

ut
y

C
yc

le
 (%

)

Connection Interval

 MAC+Protocol Conversion
 RIOT GNRC
 Tencent Stack
 TinyNet

Figure 15: Energy consumption comparison in the BGB

scenario. Left: sender. Right: receiver.

8ms 16ms 64ms 128ms
0

3

6

9

R
ad

io
 D

ut
y

C
yc

le
 (%

)

Sleep Interval

 MAC+Protocol Conversion
 RIOT GNRC
 Tencent Stack
 TinyNet

8ms 16ms 64ms 128ms
0

3

6

9

R
ad

io
 D

ut
y

C
yc

le
 (%

)

Sleep Interval

 MAC+Protocol Conversion
 RIOT GNRC
 Tencent Stack
 TinyNet

Figure 16: Energy consumption comparison in the ZGZ

scenario. Left: sender. Right: receiver.

We can see that (1) TinyNet, Tencent stack and RIOT GNRC
result in the similar radio duty cycles, which are slightly larger
than the baseline. (2) Compared with Tencent stack and RIOT
GNRC, TinyNet has slightly larger duty cycles due to additional
functionalities like bidirectional neighbor discovery. (3) In the
BGB scenario, the radio duty cycle decreases when the connection
interval increases. It is expected because BLE requires control
packet exchanges every connection interval and the overhead of
control packets decreases with increasing connection interval. (4)
In the ZGZ scenario, the radio duty cycle decreases when the sleep
interval increases. This is because the frequency of CCA (Clear
Channel Assessment) decreases with the increasing sleep interval.

8 Discussion

We focus now on what can be distilled from the design and
implementation of TinyNet. We first revisit the principles TinyNet
builds upon. We then emphasize that there are important design
techniques employed in TinyNet, but which are different from the
earlier sensor networking systems or other more general-purpose
systems. We finally contrast the important aspects of TinyNet and
sensor network systems.

8.1 Principles TinyNet builds upon

L2.5 designs. We leverage the layering concept from networking
protocols, enabling scalability to multiple radio technologies and
thereof unification. Similar to SP [43], we also introduce an
abstraction layer L2.5 in TinyNet to provide a unified interface on
top of a wide range of data link and physical layer technologies that
allow the network layer and the upper-layer protocols to operate
efficiently through link independent optimizations. Although the
principles are similar, the detailed design considerations are quite
different. For example, TinyNet has more modules at L2.5. Some
modules, e.g., fragmentation and header compression, are necessary
for supporting 6LoWPAN and IPv6. Some other modules, e.g., BLE

adaptation and LoRaWAN adaptation, are necessary for unifying
different radio technologies. Besides, some key modules in TinyNet
have drastically different designs as described in Section 3.

Modular approach. Modularity is a well-known approach that
eases the implementation of new protocols by increasing code
reuse, and enables co-existing protocols to share and reduce code
and resources consumed at run-time, fostering greater intellectual
synergy. TinyNet’s modular designs differ from previous works [13,
29] in two ways. First, TinyNet provides a different set of modules
supporting key services including (1) unification of different radios
(2) interoperability (3) reliability consideration for low-power links.
Second, unlike TinyOS’s static approach and compile-time wiring,
TinyNet makes use of pointers and dynamic memory allocations,
allowing adding more advanced features (e.g. dynamic loading of
the modules) in the future.

8.2 Techniques TinyNet employs

uniMAC abstractions. In TinyNet, uniMAC provides a general
interface that encapsulates many low-level details of different radio
technologies. While some functions are direct encapsulation of the
underlying layer, the design of other functions requires special
consideration for different radio technologies. For example, layer
3 protocols, such as RPL, usually require an API to get the link
quality (e.g., getLinkQuality()) for routing selection. For low
power and lossy networks, link quality metrics include RSSI, LQI,
ETX, PRR, etc [2]. Link quality estimation may not be consistent
among different MAC protocols, e.g., for LPLMAC, link quality may
be overestimated due to the inaccurate counting problem of the
wake-up packets, especially when bursty channel contention and
coexistent interference appear [9]. As an adaptation layer, uniMAC
translates these metrics to proper link quality values for the upper
layer through calibration, normalization, combination, etc.

Unified neighbor management. Neighbor management is an
essential function that all previous works provide. In TinyNet,
we provide two major functionalities. First, we provide a unified
neighbor table which provides services to many other modules.
The neighbor management module differs from the existing
ones [13, 32, 43]. It is designed for multiple underlying radio
technologies, instead of a single one. Moreover, unlike the
TinyOS network stacks where there are separate modules for link
estimation, routing engine, and possibly topologymanagement [51],
TinyNet’s neighbor management module integrates all the above
functionalities. Second, we provide bidirectional and continuous

neighbor discovery services. Bidirectional discovery means that
one node can find other nodes and vice versa, which is important
for integrating with the packet relay module in order to provide
multi-hop communication capabilities. Continuous discovery is
also important so that neighborhood information (e.g., neighbor
identity, the corresponding link quality) can be regularly updated
for dynamic routing selection.

Communication scheduling. While communication schedul-
ing is a common and widely technique to improve transmission
efficiency, TinyNet employs this technique in two different ways.
First, we employ conflict graph-based scheduling for multi-radio
platforms. Second, we use it for automatic synchronization of
transmission/reception slots in the relay module. Synchronization

258

MobiSys ’22, June 25–July 1, 2022, Portland, OR, USA W. Dong et al.

means alignment of time and frequency so that transmission
can successfully arrive at the next hop. Unlike many TinyOS
modules, e.g. FTSP [37], which perform global time synchronization,
TinyNet exploits rendezvous points during data communication
for neighborhood time synchronization. The neighborhood time
information is then recorded and timely updated in the neighbor
table. We find that neighborhood time information is sufficient for
communication over a one-hop link, as well as a multihop path as
communication over a path takes place hop by hop.

8.3 TinyNet vs. sensornet

Sensor networks are homogeneous systems deployed for an
application-specific and collaborative purpose [32]. Due to limited
communication range, sensornets typically employ multihop
communications. The early wisdom is that end-to-end connectivity
may not be the primary goal of sensornets. However, the landscape
has shifted drastically in recent years with technological advances.
More and more heterogeneous IoT devices are connected to the
Internet. 802.15.4, BLE, and LoRa are all important techniques for
IoT. It is beneficial to put TCP/IP over these low-power links so that
IoT could be interoperable with the traditional TCP/IP networks
to support popular IoT application protocols [30], like MQTT [40]
and ZeroMQ and to simply IoT gateway design and to provide
better services to the applications with high reliability and high
link utilization requirements. It is also worth noting that we build
TCP on top of BLE connected mode to provide end-to-end reliability.
TCP’s end-to-end reliability differs from the built-in BLE reliability
mechanism which only protects a frame over a single link.

TinyNet intends to incorporate many standardized protocols
into one architecture, providing end-to-end connectivity to the rest
of the Internet. TinyNet focuses on the interoperability issue and
tries to make IoT devices the first-class citizen of the Internet, while
still encouraging innovations at the lower layers.

9 Related Work

TinyNet draws insights from many existing works. We divide them
into three main categories as described as follows.

Network architectures for 802.15.4. SP [43] provides a unified
interface to a wide range of link layer technologies that allows the
network layer and the above protocols to operate efficiently through
link-independent optimizations. Building on top of SP, NLA [13]
(Network Layer Abstraction) proposes a modular network layer
for sensor networks. This modularity eases the implementation of
new protocols by increasing code reuse and enables co-existing
protocols to share. The above existing architectures shed light
on many important aspects in designing TinyNet. On the other
hand, TinyNet makes several unique contributions. Specifically,
TinyNet provides a unified L2.5 across different radio technologies.
In contrast, all existing sensor network architectures focus on a
single radio technology, i.e., 802.15.4.

Network architecture and protocols for BLE and LoRa.
ALBER is [31] an adaptation layer between BLE and RPL, providing
multi-hop support for BLE. It tightly couples RPL and BLE
operations together. TinyNet can also adopt RPL at the network
layer. However, TinyNet provides multi-hop support for a wide
range of radio technologies. This consideration forces TinyNet to

incorporate more generic modules. For example, to enable the multi-
hop feature on LoRaWAN, TinyNet provides neighbor discovery
which is absent in ALBER. BLEach [47] is a full-fledged IPv6-
over-BLE stack. However, it is specifically designed for BLE while
TinyNet is designed for many different radio technologies. LoRa is a
relatively new radio technology which attracts significant research
attention in recent years [5, 17, 27, 33, 52]. In [50], a LoRa-based
networking stack is designed in order to enable standardized IPv6
LoRa communications. This stack only applies to the LoRa radio
and does not consider code reuse in the implementation.

Interoperability for heterogeneous IoT networks. 6LoW-
PAN [53] was originally designed for sensor networks a decade
ago. This standard specifies how to format IPv6 packets using
a compact header over low-power wireless links. Some open-
source IoT operating systems have options for supporting Internet
protocols to some extent. For example, the default network stack in
RIOT [15], i.e., GNRC, provides generic interfaces for supporting
multiple heterogeneous interfaces and stacks that can concurrently
operate. TencentOS Tiny [49] and Huawei LiteOS [23] provide the
network stack support for different radios including 802.15.4, BLE,
and LoRa. So far as we know, all the above stacks do not fully
support interoperatability among common radio technologies. For
example, RIOT’s GNRC does not support IPv6 for LoRa. Besides
research efforts, there is much industrial progress in recent years.
Although most commercial-off-the-shelf (COTS) IoT devices are not
interoperable with the Internet, this situation is rapidly changing.
In 2019, Google, Apple, Amazon and the ZigBee Alliance have
launched a project called CHIP [38] (i.e., Connected Home over
IP, now changed to Matter) to simplify the connection between
different IoT devices from different companies. At the core of this
standard is the IP layer which provides interoperability between the
IoT devices having different radio technologies including Bluetooth,
Wi-Fi, Z-Wave, and ZigBee. Our work conforms to this trend and
can provide better support for different radios, better modularity
and better efficiency.

10 Concluding Remarks

In this paper, we design and implement TinyNet, a lightweight,
modular, and unified network architecture for representative low-
power radio technologies for the IoT. We implement TinyNet on
two IoT OSes (Contiki OS and RIOT) and three types of IoT nodes.
The work presented here is only a step towards an “complete
IoT network architecture”. Looking forward, there are multiple
future research directions. First, more radio technologies and more
network protocols should be incorporated. Second, some cross-
layer issues should be carefully considered so that more tunable
parameters will be exposed for cross-layer optimizations.

Acknowledgements
We sincerely thank our shepherd, Matt Welsh, and the anonymous
reviewers for their valuable feedback. This work is supported
by NSFC under grant no. 62072396, Zhejiang Provincial Natural
Science Foundation for Distinguished Young Scholars under grant
no. LR19F020001, the Fundamental Research Funds for the Central
Universities (no. 226-2022-00087), and Alibaba-Zhejiang University
Joint Institute of Frontier Technologies. Yi Gao is the corresponding
author.

259

TinyNet: a Lightweight, Modular, and Unified Network Architecture for the Internet of Things MobiSys ’22, June 25–July 1, 2022, Portland, OR, USA

References
[1] A Nonstandard For Transmission Of IP Datagrams Over Serial Lines: Slip. 2020.

https://tools.ietf.org/html/rfc1055. (2020).
[2] Routing Metrics Used for Path Calculation in Low-Power and Lossy Networks.

2012. https://tools.ietf.org/html/rfc6551. (2012).
[3] Apache NimBLE. 2021. https://github.com/apache/mynewt-nimble. (2021).
[4] Bahl P, Adya A, Padhye J and Wolman A. 2014. Reconsidering wireless systems

with multiple radios. In ACM SIGCOMM Computer Communication Review.
[5] Artur Balanuta, Nuno Pereira, Swarun Kumar, and Anthony Rowe. 2020. A

cloud-optimized link layer for low-power wide-area networks. In Proc. of ACM
MobiSys.

[6] CC2650 Launchpad Development Kit. 2020.
http://www.ti.com/lit/ml/swru451/swru451.pdf. (2020).

[7] Cisco catalyst 9100 ap. 2021. https://www.cisco.com/c/en/us/products
/wireless/catalyst-9100ax-access-points/. (2021).

[8] LoRa Alliance Technical Committee. 2017. LoRaWAN 1.1 Specification. Standard
V1 (2017).

[9] Mengshu Hou Daibo Liu, Zhichao Cao and Yi Zhang. 2016. Frame counter:
Achieving accurate and real-time link estimation in low power wireless sensor
networks. In Proc. of IEEE IPSN.

[10] Adam Dunkels. 2002. uIP-A free small TCP/IP stack. Technical Report.
[11] Adam Dunkels. 2011. The ContikiMAC Radio Duty Cycling Protocol. (2011).
[12] Adam Dunkels, Bjorn Gronvall, and Thiemo Voigt. 2004. Contiki-a lightweight

and flexible operating system for tiny networked sensors. In Proc. of IEEE LCN.
[13] Cheng Tien Ee, Rodrigo Fonseca, Sukun Kim, DaekyeongMoon, Arsalan Tavakoli,

David Culler, Scott Shenker, and Ion Stoica. 2006. A modular network layer for
sensorsets. In Proc. of USENIX OSDI.

[14] Rashad Eletreby, Diana Zhang, and et. al. 2017. Empowering Low-Power Wide
Area Networks in Urban Settings. In Proc. of ACM SIGCOMM.

[15] Emmanuel Baccelli, Cenk Gundo gan, Oliver Hahm, Peter Kietzmann, Martine S.
Lenders, Hauke Petersen, Kaspar Schleiser, Thomas C. Schmidt, and Matthias
Wahlisch. 2021. RIOT: The friendly Operating System for the Internet of Things.
https://github.com/RIOT-OS/RIOT. (2021).

[16] Yasmin Fathy and Payam Barnaghi. 2019. Quality-Based and Energy-Efficient
Data Communication for the Internet of Things Networks. IEEE Internet of Things
Journal 6, 6 (2019), 10318–10331.

[17] Amalinda Gamage, Jansen Christian Liando, Chaojie Gu, Rui Tan, and Mo Li.
2020. LMAC: Efficient carrier-sense multiple access for lora. In Proc. of ACM
MobiCom.

[18] Generic (GNRC) network stack. 2020. https://riot-
os.org/api/group_net_gnrc.html. (2020).

[19] Google WiFi AP. 2021. https://store.google.com/gb/product/ google_wifi_specs.
(2021).

[20] Bluetooth Special Interest Group. 2014. Bluetooth Specification Version 4.2.
Technical Report.

[21] Dominique D Guinard and Vlad M Trifa. 2016. Building the web of things. Vol. 3.
Manning Publications Shelter Island.

[22] Anwar Hithnawi, Su Li, Hossein Shafagh, James Gross, and Simon Duquennoy.
2016. Crosszig: combating cross-technology interference in low-power wireless
networks. In Proc. of ACM IPSN.

[23] Huawei LiteOS. 2020. https://www.huawei.com/minisite/liteos/en/. (2020).
[24] Jonathan W Hui and David E Culler. 2008. IP is Dead, Long Live IP for Wireless

Sensor Networks. In Proc. of ACM SenSys.
[25] Internet Protocol, Version 6 (IPv6) Specification. 2020.

https://tools.ietf.org/html/rfc2460. (2020).
[26] Hassan Iqbal, Muhammad Hamad Alizai, Ihsan Ayyub Qazi, Olaf Landsiedel, and

Zartash Afzal Uzmi. 2018. Scylla: Interleaving Multiple IoT Stacks on a Single
Radio. In Proc. of ACM CoNEXT.

[27] Kai-Hsiang Ke, Qi-Wen Liang, Guan-Jie Zeng, Jun-Han Lin, and Huang-Chen Lee.
2017. A LoRa Wireless Mesh Networking Module for Campus-Scale Monitoring.
In Proc. of ACM IPSN.

[28] Kim, Hyung-Sin, Sam Kumar, and David E. Culler. 2019. Thread/OpenThread:
A compromise in low-power wireless multihop network architecture for the
Internet of Things. In IEEE Communications Magazine, Vol. 57. 55–61. Issue 7.

[29] Kevin Klues, Gregory Hackmann, Octav Chipara, and Chenyang Lu. 2007.
A component-based architecture for power-efficient media access control in
wireless sensor networks. In Proc. of ACM SenSys.

[30] Sam Kumar, Michael P Andersen, Hyung-Sin Kim, and David E. Culler. 2020.
Performant TCP for Low-Power Wireless Networks. In Proc. of USENIX NSDI.

[31] Taeseop Lee, Myung-Sup Lee, Hyung-Sin Kim, and Saewoong Bahk. 2016. A
synergistic architecture for RPL over BLE. In Proc. of IEEE SECON.

[32] Philip Levis, Sam Madden, David Gay, Joseph Polastre, Robert Szewczyk, Alec
Woo, and Eric Brewer†and David Culler. 2004. The Emergence of Networking
Abstractions and Techniques in TinyOS. In Proc. of USENIX NSDI.

[33] Chenning Li, Hanqing Guo, Shuai Tong, Xiao Zeng, Zhichao Cao, Mi Zhang,
Qiben Yan, Li Xiao, Jiliang Wang, and Yunhao Liu. 2021. NELoRa: Towards
Ultra-low SNR LoRa Communication with Neural-enhanced Demodulation. In

Proc. of ACM SenSys.
[34] Jansen C. Liando, Amalinda Gamage, Agustinus W. Tengourtius, and Mo Li.

2019. Known and Unknown Facts of LoRa: Experiences from a Large-scale
Measurement Study. ACM Transaction on Sensor Networks 15, 2, Article 16 (Feb.
2019), 16:1–16:35 pages.

[35] Tyson Macaulay. 2016. RIoT Control: Understanding and Managing Risks and the
Internet of Things. Morgan Kaufmann.

[36] Manyika J, Chui M, Bisson P, Woetzel J, Dobbs R, Bughin J, Aharon D. 2016. The
Internet of Things: Mapping the Value Beyond the Hype. arXiv e-prints (2016).

[37] Miklós Maróti, Branislav Kusy, Gyula Simon, and Ákos Lédeczi. 2004. The
Flooding Time Synchronization Protocol. In Proc. of ACM SenSys.

[38] Matter (formerly Project Connected Home over IP, or Project CHIP). 2022.
https://github.com/project-chip/connectedhomeip. (2022).

[39] Mesh networking with the power of Bluetooth technology. 2020.
https://www.bluetooth.com/specifications/mesh-specifications/. (2020).

[40] Message Queuing Telemetry Transport (MQTT). [n. d.]. http://mqtt.org/. ([n.
d.]).

[41] Sunghyun Moon, Taekjoo Kim, and Hojung Cha. 2007. Enabling Low Power
Listening on IEEE 802.15.4-Based Sensor Nodes. In Proc. of IEEE WCNC.

[42] Yao Peng, Longfei Shangguan, Yue Hu, Yujie Qian, Xianshang Lin, Xiaojiang
Chen, Dingyi Fang, and Kyle Jamieson. 2018. PLoRa: A Passive Long-range Data
Network from Ambient LoRa Transmissions. In Proc. of ACM SIGCOMM.

[43] Joseph Polastre, Jonathan Hui, Philip Levis, Jerry Zhao, David Culler, Scott
Shenker, and Ion Stoica. 2005. A unifying link abstraction for wireless sensor
networks. In Proc. of ACM SenSys.

[44] Raspberry Pi. 2020. https://www.raspberrypi.org/. (2020).
[45] Samsung Connect Home. 2021. https://www.samsung.com/sg/ smarthome/.

(2021).
[46] Jianping Song, Song Han, Al Mok, Deji Chen, Mike Lucas, Mark Nixon, andWally

Pratt. 2008. WirelessHART: Applying wireless technology in real-time industrial
process control. In Proc. of IEEE RTAS.

[47] Michael Spörk, Carlo Alberto Boano, Marco Zimmerling, and Kay Römer. 2017.
BLEach: Exploiting the Full Potential of IPv6 over BLE in Constrained Embedded
IoT Devices. In Proc. of ACM SenSys.

[48] Technical report of TinyNet. 2022. https://www.dropbox.com/s/ph5dqf59rncbfij/
Technical%20report-TinyNet.pdf?dl=0. (2022).

[49] TencentOS Tiny: A real-time IoT system. 2020.
https://github.com/Tencent/TencentOS-tiny. (2020).

[50] Steffen Thielemans, Maite Bezunartea, and Kris Steenhaut. 2017. Establishing
transparent IPv6 communication on LoRa based Low PowerWide Area Networks
(LPWANs). In Proc. of IEEE WTS.

[51] TinyOS Alliance. [n. d.]. https://github.com/tinyos/tinyos-main. ([n. d.]).
[52] Shuai Tong, Jiliang Wang, and Yunhao Liu. 2020. Combating packet collisions

using non-stationary signal scaling in LPWANs. In Proc. of ACM MobiSys.
[53] Transmission of IPv6 Packets over IEEE 802.15.4 Networks. 2020.

https://tools.ietf.org/html/rfc4944. (2020).
[54] W3C WoT (Web of Things) Working Group. 2021. https://www.w3.org/WoT/.

(2021).
[55] Wei Dong, Jie Yu, and Xiaojin Liu. 2015. CARE: Corruption-Aware Retransmission

with Adaptive Coding for the Low-Power Wireless. In Proc. of IEEE ICNP.
[56] Wi-Fi & LoRaWAN® Deployment Synergies. 2019. https://lora-

alliance.org/resource-hub/wi-fi-lorawanr-deployment-synergies. (2019).
[57] Tim Winter, Pascal Thubert, Anders Brandt, Jonathan W Hui, Richard Kelsey,

Philip Levis, Kris Pister, Rene Struik, Jean-Philippe Vasseur, Roger K Alexander,
et al. 2012. RPL: IPv6 Routing Protocol for Low-Power and Lossy Networks. RFC
6550 (2012), 1–157.

[58] Yun-Chen Li and Mei-Ling Chiang. 2005. LyraNET: a zero-copy TCP/IP protocol
stack for embedded operating systems. In in Proc. of IEEE RTCSA.

260

