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A B S T R A C T

Path profiling, which aims to trace the execution path of programs, has been widely adopted in various areas
such as record and replay, program optimizations, performance diagnosis and etc. Many path profiling ap-
proaches have been proposed in the literature, including the BLPP (Ball-Larus Path Profiling) algorithm, and PAP
(Profiling All Path). Unfortunately, both approaches suffer from large tracing overhead for representing long
execution paths. In this paper, we propose AdapTracer, a path profiling approach based on arithmetic coding.
There are two salient features in AdapTracer. First, it is space efficient by adopting a path profiling algorithm
based on arithmetic coding. Second, it is adaptive by explicitly considering the execution frequency of each edge.
We have implemented AdapTracer to profile Android applications. Our experimental evaluation uses modified
JGF benchmarks to show AdapTracer’s efficiency. Experimental results show that AdapTracer reduces the trace
size by 44% on average and incurs execution overhead by 10% at most compared to PAP.

1. Introduction

Path profiling refers to the technique for tracing a program’s ex-
ecution path. A path profile gives information about the execution be-
havior of the program. It has been widely adopted in various areas such
as record and replay [1], program optimizations [2,3], performance
diagnosis [4], and etc.

In their seminal work [5], Ball and Larus have described an efficient
path profiling algorithm (called BLPP algorithm) using a compact
numbering scheme to differentiate different paths in a program. Spe-
cifically, the program is first modeled as a control flow graph (CFG).
When the CFG is a directed acyclic graph (DAG), the BLPP algorithm
assigns a unique PathID in the range of −n[0, 1] (where n is the total
number of paths in the DAG) to one execution path. When the CFG is
not a DAG, the BLPP algorithm first transforms the graph into DAG by
removing the back-edges. Multiple PathIDs are used to represent a
cyclic path (path that has loops), which inevitably introduces a large
overhead [6].

Recently, Li et al. propose PAP [7], an efficient path profiling al-
gorithm for tracing all paths including acyclic and cyclic paths. It in-
struments probes on the multiple in-edges of each CFG node and uses
addition and multiplication operations in the calculation of probe va-
lues. In this way, it can effectively profile all finite-length paths within a
procedure. Then the PathID is used to restore the corresponding path by
doing division and modulo operations reversely. When long paths are
executed, the probe value keeps growing and may overflow. The
breakpoints mechanism is introduced in PAP to deal with this problem.

A breakpoint consists of two elements: the CFG node and the probe
value before overflow.

Unfortunately, both approaches suffer from large space overhead for
representing a long execution path. For the BLPP algorithm, multiple
PathIDs may be required for the representation. For PAP, multiple
breakpoints may be required to solve the problem of PathID overflow.
We also notice that both approaches are not adaptive, i.e., they use a
fixed numbering scheme for tracing multiple executions of the same
program. Hence, they lose the opportunity to optimize the space
overhead for frequently executed paths.

To address the two problems mentioned above, we propose
AdapTracer, an adaptive path profiling using arithmetic coding. There
are two salient features in AdapTracer. First, it is space efficient by
adopting a path profiling algorithm based on arithmetic coding.
Different from PAP, AdapTracer instruments probes on the multiple
outedges of each CFG node, and uses operations involved in the integer
implementation of arithmetic coding [8] for calculating the probe va-
lues. Breakpoints for labelling a node in the CFG are not required since
AdapTracer decodes the PathID from start to exit, unlike PAP which
relies on reverse decoding. Second, it is adaptive by explicitly con-
sidering the execution frequency of each edge, which is recorded by the
edge counters. With the help of edge counter, AdapTracer adjusts each
edge’s probability to achieve a close-to-optimal path encoding.

We have implemented AdapTracer to profile Android applications.
Compared with our previous version [9], we have improved the ex-
perimental evaluation a lot by including more programs from the JGF
suite and a large set of medium (e.g., Google Play) to big Android
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programs. Related work has been extended by a quantitative analysis of
existing path profiling algorithms. Moreover, a new chapter with an
analysis of common bugs using AdapTracer has been added. Experi-
mental results show that AdapTracer reduces the trace size by 44% on
average and incurs execution overhead by 10% at most compared to
PAP.

The contributions of this paper are summarized as follows:

• We identify two significant problems using existing path profiling
techniques.

• We propose a space-efficient and adaptive path profiling technique
AdapTracer to reduce the trace size.

• We implement AdapTracer and use modified JGF benchmarks to
show the effectiveness of our system.

The rest of this paper is structured as follows. Section 2 describes the
related work. Section 3 shows two examples that motivate our work.
Section 4 presents the encoding and decoding algorithm of AdapTracer.
Section 5 and Section 6 present the details of the AdapTracer system.
Section 7 shows the evaluation results. Section 8 presents three case
studies to illustrate the usage of our approach. Section 9 concludes this
paper and gives future research directions.

2. Related work

2.1. Path profiling

Path profiling gives useful information about the execution behavior
of the programs [10–13]. It attracts much research attention. In [5],
each edge in a program’s DAG is assigned with a weight. The PathID of
an executed path is the sum of edge weights. To reduce the tracing
overhead, several approaches for profiling a subset of paths are pro-
posed. TPP (Targeted Path Profiling) [14] eliminates unselected paths
by assigning large negative weights to the edges that belong to the
unselected paths but not belong to the selected paths. The selected
paths are assigned with unique positive PathIDs and the unselected
paths are assigned with non-unique negative PathIDs. The negative
PathIDs will not be recorded and the tracing overhead is thus reduced.

To further reduce the tracing overhead that is caused by expensive
hash operations, Preferential-PP (Preferential-Path Profiling) [15] de-
signs a compact path numbering algorithm for interesting paths. The
tracing overhead is further reduced by saving the execution frequency
of the interesting paths in an array. Pertinent-PP (Pertinent-Path Pro-
filing) [16] provides a more user-friendly interface for developers to
determine interesting paths. Developers only need to specify a set of
interested key operations (e.g., read(), write()), Pertinent-PP would
then only track the paths that are relevant to the set of key operations. It
enables an on-demand path profiling and reduces the tracing overhead.
However, profiling selected paths may miss the opportunity of finding
the bugs residing in unselected paths. Therefore, profiling all paths is
necessary for effective bug diagnosis. Different from profiling partial
paths, AdapTracer profiles all paths in a program. AdapTracer can ef-
fectively reduce the expectation tracing overhead by assigning fre-
quently executed paths with fewer bits.

Practical-PP (Practical Path Profiling) [17] extends TPP by simpli-
fying path profiling using an edge profile. The amount of in-
strumentations on cold paths and paths that the edge profile predicts
well is reduced. Similar with Practical-PP, PEP (Path and Edge Pro-
filing) [18] also lowers instrumentation overhead using the edge profile
collected so far. However, PEP incorporates a thread-switching me-
chanism that is common to Java virtual machines to further reduce the
runtime overhead. P3 (Partitioned Path Profiling) [19] reduces the
runtime overhead by running K copies of the program in parallel, each
with the same input but on a separate core. P3 collects the profile only
for a subset of intra-procedural paths in each copy. Different from
above works that aim to reduce the runtime overhead, AdapTracer aims

to reduce the expectation tracing overhead. Therefore, AdapTracer is
orthogonal with above works.

In BLPP-like profiling approaches (e.g. WPP[6], TPP[14], Practical-
PP[17] and k-BLPP[20]), multiple PathIDs are required for representing
a cyclic path. A new PathID is added in the sequence once encountering
a back-edge. HPP (Hierarchical Program Paths)[21] is a BLPP based
path profiling and querying approach. By assigning inter-procedure
paths with unique PathIDs, HPP can query any interested paths. Al-
though HPP reduces path encoding overhead by eliminating redundant
PathIDs at the call sites comparing with BLPP, it still statically encodes
paths without considering execution frequency of paths. Different from
HPP, AdapTracer adaptively encodes paths using arithmetic code.
Frequently executed paths are assigned with less trace size. Therefore,
AdapTracer improves the space efficiency. Roman et al. [22] proposed
an program flow tracing method based on the BLPP algorithm. It relies
on external devices to record traces, which is not applicable to our
scenarios that the applications are distributed to users. In this case, we
need to minimize the trace space to ensure the usability on the user
side. PAP (Profiling All Path) [7] profiles acyclic and cyclic paths in a
unified manner, reducing the overhead of using multiple PathIDs
compared to BLPP-like approaches. A breakpoint (i.e., the CFG node
and the PathID before overflow) is added in the sequence once the
current PathID is going to overflow. Different from BLPP and PAP, our
approach makes full use of each PathID for the representation of paths
without extra recording overhead of CFG nodes.

Comparing with the commercial software RapiTime [23], Adap-
Tracer has the following two advantages. First, AdapTracer traces the
program flow in a fine-grained level (i.e., code block level), while the
tracing of RapiTime is in the function call level. AdapTracer provides
more program execution information. It improves the probability of
finding worst-case execution comparing with other approaches that
provide course-grained (e.g., function level) information. In this way,
the time of finding bugs is saved. Second, AdapTracer traces the control
flow of the program, while RapiTime only records the start and end
time of functions. Therefore, AdapTracer can be used not only for ex-
ecution time analysis, but also for analyzing control flow bugs and se-
curity issues (e.g., as we detailed in the case study Section 8).

Table 1 compares various approaches with respect to three key
desired features:

• Adaptive. This is important as to reduce the expectation overhead.

• Space efficiency. This is an important feature for the profiling ap-
proach to be applies on resource-constraint devices.

• Whole path profiling. It means that the corresponding algorithms
profile all of the paths in a program, comparing with algorithms that
only profile partial paths. Effectively profiling all of the paths brings
more benefits than only profiling partial or selected paths.

Table 1
Comparison of existing approaches.

Approach Adaptive Space efficiency Whole path profiling

TPP √ √ ×
Preferential-PP × √ ×
Pertinent-PP × √ ×
Practical-PP × √ ×
PEP √ √ ×
P3 × √ ×
WPP × × √
k-BLPP × × √
PAP × × √
RapiTime × √ ×
Roma × × √
HPP × × √
AdapTracer √ √ √
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2.2. Arithmetic coding

Arithmetic coding is a well-known universal, lossless compression
technique that achieves close-to-optimal compression rates [8,24]. Like
other compression mechanisms, arithmetic coding relies on the ob-
servation that in any given input stream, only a fraction of symbols are
likely to occur frequently. Arithmetic coding achieves compression by
encoding these frequently occurring symbols using a smaller number of
bits.

Suppose we have an alphabet N = {a, b, c, d}, and the corre-
sponding probability model is {0.4, 0.2, 0.1, 0.3}. Now, we wish to send
the message daca. The encoding and decoding procedures are shown
below.

2.2.1. Encoding
Initially, both the encoder and the decoder know that the range is

[0, 1). After seeing the first symbol d, the encoder narrows it down to
[0.7, 1) (this is the range that the model allocates to symbol d). For the
second symbol a, the interval is further narrowed, since a has been
allocated to [0, 0.4). Thus the new interval is [0.7, 0.82). For the third
symbol c, the new interval is [0.808, 0.82). For the last symbol a, the
interval is [0.808, 0.8128). The final procedure is value selection, and a
single number in the range can be chosen for the encoding result (0.809
in our example).

2.2.2. Decoding
In order to restore the sending message, we use the single number

from the encoding. After knowing the single number 0.809, the decoder
can immediately deduce that the first character was d. Now the decoder
simulates the action of the encoder, and the range is expanded to [0.7,
1). In further processing, the decoder computes each subrange using the
corresponding symbol probability. Next, the decoder can get subrange
of [0.7, 0.82). So the decoder knows that the second character was a. In
this way, the decoder can completely decode the transmitted message.

We note that it is easy for PAP to cause overflow because it encodes
path using the multiplication and the addition. The close-to-optimal
feature of arithmetic coding attracts us to apply it to path profiling,
reducing the tracing overhead.

3. Motivating examples

3.1. Benefit of using arithmetic coding

Fig. 1(a) shows the CFG of a program where a node denotes a code

block and a directed edge denotes an execution flow. There is a back-
edge between code block B and C. Suppose that the execution path is
ABCBCBCBCBCD. Without loss of generality, we assume a 3-bit value is
used for one PathID.

PAP adds probes on multiple in-edges of a CFG node and uses
multiplication and addition to calculate the PathID. For the example
shown in Fig. 1 (a), it first initializes the probe value r to 0, and then
changes the value of r according to the operation associated with each
edge following the execution path. The entire procedure is shown
below:

• After the edge AB is executed, r = 0.

• After the edge BC is executed, the probe value r is unchanged.

• After the edge CB is executed, r = 1.

• After the subsequent edges are executed until the 3rd CB, r = 7.

Next, just before executing the 4th CB, the probe value will overflow
if multiplication and addition are applied. PathID overflow will cause
path decoding failures. To address this problem, PAP records the cur-
rent probe value (i.e., 7) and the current CFG node (i.e., C). It re-in-
itializes the probe to 0 and continues the above path encoding process.
Finally, PAP records the execution path as 7, C, 1 with 7 indicating the
probe value before overflow, C indicating the CFG node before over-
flow, and 1 representing the probe value after overflow. If we use a 2-
bit value to represent a CFG node (since there are 4 nodes in Fig. 1 (a)),
the overall cost of PAP is + + =3 2 3 8 bits.

In essence, PAP uses multiplication and addition to differentiate
different in-edges of a CFG node. The path decoding process starts from
the exit node (i.e., D). The previous node is iteratively inferred from the
current probe value by division and modulo operations. Since the de-
coding is in reverse order, a breakpoint (containing the CFG node and
probe value before overflow) is required to infer the executed path
before overflow. Otherwise, the decoding process would have no idea
where to start for decoding the path before overflow.

We note that two problems cause large recording overhead in PAP.
First, path encoding using multiplication and addition will easily cause
overflow. Second, the CFG node in the breakpoint causes extra over-
head. Different from PAP, AdapTracer adds probes on multiple out-
edges of a CFG node and uses arithmetic coding to address the above
two problems. Arithmetic coding can achieve a more compact path
encoding than PAP. In addition, path decoding starts from the start
node in AdapTracer. Hence, the CFG node in the breakpoint can be
implicitly inferred from the probe value before overflow, i.e.,
AdapTracer can effectively eliminate the overhead of CFG node in the
breakpoints.

We will show in Section 4 that the recoding overhead of AdapTracer
is 3 bits for the execution path ABCBCBCBCBCD, a reduction of 5 bits
compared with PAP.

3.2. Benefit of adaptive coding

When applying arithmetic coding to path profiling, a naive ap-
proach is to assign equal probabilities to multiple out-edges of a CFG
node since it is possible to execute each edge. For the example shown in
Fig. 1 (b), we assign equal probabilities to the two out-edges of node C,
i.e., 0.5. For the execution path ABCBCBCBCBCD, the tracing overhead
is 6 bits (the same as in the previous subsection).

We note that the performance of arithmetic coding highly depends
on the probability model which assigns a probability to each of the
various symbols [8]. These probabilities correspond to the edge prob-
abilities for our path profiling problem. The assignment of equal
probabilities leads to poor performance since it loses the opportunity to
reduce the overhead for frequently executed paths. For example, if the
path ABCBCBCBCBCD is frequently executed, it is beneficial to reduce
the tracing overhead for this path so that the expected tracing overhead
can be significantly reduced (in other words, the overall cost for tracing

Fig. 1. Examples of PAP and AdapTracer. (a) The instrumentation example of
PAP. (b) Assigning equal probability to the edge CB and the edge CD. (c) The
example of AdapTracer’s edge probability model.
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multiple executions can be significantly reduced).
A natural improvement is to assign high probabilities to frequently

executed edges. For the example shown in Fig. 1 (c), we assign a high
probability 0.8 to the frequently executed edge CB and a low prob-
ability 0.2 to the infrequently executed edge CD, the tracing overhead
can be reduced to 3 bits for the execution path ABCBCBCBCBCD.
AdapTracer records the edge execution frequencies during multiple
program executions and uses this information to adaptively change edge
probabilities for arithmetic coding.

It is worth noting that both BLPP and PAP are nonadaptive since they
both assign a fixed rule upon executing an edge.

4. The overview and algorithms of AdapTracer

Fig. 2 shows an overview of AdapTracer. We have implemented
AdapTracer to profile Android applications. There are two tools in
AdapTracer: ATInstrumentor and TraceParser. Section 5 describes how
ATInstrumentor instruments the APK (Android Package). Section 6
presents the details of how TraceParser generates the new edge prob-
abilities according to the restored paths.

At the PC side, ATInstrumentor analyses the original APK and
generates the instrumented APK.Then, the instrumented APK is pushed
to the mobile phone. At the mobile side, the instrumented APK is in-
stalled on the Android system. The instrumented Android application
runs on the Android system for some time and produces the trace log.
After that, the trace log is pulled from the mobile phone. TraceParser
restores the paths from the trace log based on the edge probability
model. The new edge probability model can then be generated ac-
cording to the restored paths. Finally, there are two copies of the new
edge probability model. One is pushed to the mobile to replace the
instrumented Android application’s edge probability model file.
Another is used to replace the edge probability model at the PC side for
next path restoring.

In the following subsections, we will present the details of
AdapTracer encoding and decoding algorithms, which are the core
components for ATInstrumentor and TraceParser respectively.

4.1. The AdapTracer encoding algorithm

Algorithm 1 presents the procedure of the AdapTracer encoding
algorithm. In line 1, the input parameter E is a class type. E finds the
edge related elements from the edge probability model. getStartCode-
Block() gets the edge’s start code block. setCounter() and getCounter()
are used to assign and get the counter of the edge respectively. In line 2,
the local variable n is a CodeBlock class type. In line 3, AMlib is the
arithmetic coding library implemented in integer [8]. Encoder()

encodes the parameter E to a new sub-interval according to E’s prob-
ability. In line 4, inc and bound are static variables. The parameter inc is
related to the speed of updating the edge execution probability.
Section 7 shows how inc impacts on the trace size. The parameter bound
limits the edge counter to avoid overflow. When the counter is going to
overflow, the method ShrinkCounter() is called to diminish the value of
multiple out-edges’ counter of the code block n. In line 7, the edge E’s
counter is updated. In line 8, multiple out-edges’ probability of the code
block n are updated.

Specifically, as shown in Section 3, the interval is first initialized to
[0, 1) and the PathID is set to 0. Each edge is assigned with equal
probability (i.e., 0.5). After the edge CB is executed, CB’s counter is
added with one. Thus, the new CB’s probability is 0.67 and the new
CD’s probability is 0.33. Finally, the value 0.1875 (0.000112) within
[0.1621, 0.1953) is selected as the PathID. The final probability of CB
and CD are 0.75 and 0.25, respectively. In the first execution, Adap-
Tracer still uses fewer bits than PAP (i.e., − =8 6 2 bits) since Adap-
Tracer doesn’t record the code block id (e.g., CFG node id).

In the second execution of the same path, the interval and the
PathID are initialized as in the first execution. The edge probability
model is obtained from the first execution’s results. Finally, we select
the value 0.375 (0.0112) within [0.3321, 0.3925) to denote the same
path. Owing to the benefit of adaptive coding, the tracing overhead is
significantly reduced by AdapTracer (i.e., − =8 3 5 bits).

4.2. The AdapTracer decoding algorithm

Algorithm 2 shows the details of the AdapTracer encoding algo-
rithm. In line 1, PI is a pointer parameter that points to the address of
the PathID. CodeBlock S and CodeBlock E are the start code block and
the exit code block in the current method. From line 6 to line 20, AT-
decoder() restores the path of the current AndroidLifeMethod (i.e., the
Android life-cycle methods) and all related DevpMethod (i.e., the

Fig. 2. Overview of AdapTracer system.

1: function ATencoder(Edge E)
2: CodeBlock n = E.getStartCodeBlock()
3: AMlib.Encoder(E)
4: if E.getCounter() + _inc > _bound then
5: n.ShrinkCounter()
6: end if
7: E.setCounter(E.getCounter() + _inc)
8: n.updateOutedgesProbability()
9: end function

Algorithm 1. The AdapTracer encoding algorithm.
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methods written by developers) together. The details of AndroidLife-
Method and DevpMethod can be found in Section 5. In line 8, isInvo-
keDevpMethod() checks whether there is an invocation for DevpMethod.

If so, ATdecoder() jumps to restore the DevpMethod. The restored
DevpMethod path is appended in p. In line 13, Decoder() of the ar-
ithmetic coding library AMlib is used to decode the PathID. From line
14 to line 15, the probabilities of multiple out-edges are updated si-
milarly as ATencoder(). Then, in line 16, ATencoder() moves to the next
code block to continue the decoding procedure. Finally, the decoding
procedure is finished when it encounters the exit code block. The re-
stored path is saved in p and returned.

5. The design of ATInstrumentor

As shown in Section 4, there are two tools in AdapTracer: ATIn-
strumentor and TraceParser. ATInstrumentor includes four functions:
decompiling APK (Android Package) and smali files analysis, gen-
erating instrumentation model, instrumenting the smali files, re-
compiling the smali files to APK.

Because we implement AdapTracer on the Android system, we first
introduce necessary background of the Android system to better un-
derstand our approach.

5.1. The Background of Android OS

Android component and life cycle. There are four types of com-
ponents in an Android application: activity, service, broadcast receiver
and content provider. Each component is required to follow a life cycle
that defines how this component is created, used and destroyed. For
example, Fig. 3 shows the life cycle of an activity. This activity starts
with calling three callback functions (e.g., onCreate(), onStart() and
onResume()) and changes the state into “Running” (e.g., activity’s
foreground lifetime). When we press the “Back” button on the phone,
the Android application is shutdown and the activity’s state is finally
changed into “Destroyed” by calling callback functions onPaused(),
onStop() and onDestroy() accordingly. When we press the “Home”

button, the Android application goes into the background and the ac-
tivity calls onPaused() and onStop() to change the state into “Stop”. If
we return to the Android application, the activity is resumed and three
callback functions are called as shown in Fig. 3. In exception cases, a
stopped or paused activity may be killed for releasing memory.

Smali syntax. Smali is a kind of IL (Intermediate Language) that is
decompiled from the Android executable code (e.g., Dalvik machine
code) [25]. Fig. 4 shows a typical smali code of the method field. In line
1, it declares the start of the method field. The method’s declaration
consists of method name, input parameters type and return parameters
type. In this example, method name is IFSense, input parameter is
null and the return parameter is Z which means boolean type. In line 2,
it declares the number of registers used in this method. Smali is a
register-based language and all operations are on registers. In order to
add instrumentation, we increase the number of registers. In line 3, the
label .prologue is a keyword that denotes the start of the method
content. In line 9, there is another keyword (i.e., if-eqz) in this in-
struction. This instruction means that if the register v0 equals to zero
then the execution flow jumps to the address labeled with :cond_0.
Otherwise the execution flow moves to the next line. Note that the jump
among different executions can be changed by moving the position of
the jump label (i.e., :cond_0). It is beneficial for our instrumenting
work without calculating the offset addresses.

5.2. Smali files analysis

Step 1: APK decompilation. For the convenience of analyzing the
CFG model of an Android application, we first use apktool [26] to de-
compile the APK into smali files. Each smali file denotes a class. There
are several fields storing the information about the class. For example,
Head Field saves the class name, the super class name and the cor-
responding Java source file name. Method Field saves the method
name, the input parameters type, the return parameters type and the
smali code of this method. The construction of the Android applica-
tion’s CFG model is mainly based on the analysis of the Method Field.

Step 2: code block information extraction. In this step, we

Output: corresponding path
1: function ATdecoder(PathId* PI, CodeBlock S, CodeBlock E)
2: /*p is used to record the path*/
3: List<CodeBlock> p = new List<CodeBlock>()
4: CodeBlock cur = S
5: Edge eg
6: while cur ! = E do
7: p.append(cur)
8: if cur.isInvokeDevpMethod() then
9: CFG f = cur.getDMCFG()

10: p.append(ATdecode(PI, f.entry, f.exit))
11: end if
12: if cur.outEdgeCount() > 1 then
13: eg = AMlib.Decoder(PI, cur)
14: eg.setCounter(eg.getCounter() + _inc)
15: cur.updateOutedgesProbability()
16: cur = eg.getEndCodeBlock()
17: else
18: cur = cur.getOutEdgeList()[0].getEndCodeBlock()
19: end if
20: end while
21: p.append(E)
22: return p
23: end function

Algorithm 2. The AdapTracer decoding algorithm.
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analyse every method of smali files and extract the code block in-
formation according to the smali syntax [25].

According to the smali syntax mentioned in Section 5.1, we split the
smali codes into different code blocks based on the keywords and the
jump labels. For the example shown in Fig. 4, the label .prologue is a
keyword that denotes the start of the method content. From line 2 to
line 3 is the first code block. There are three kinds of information to be
recorded. First, the code block id that differentiates different code
blocks. In this example, the code block id is assigned with zero. Second,
the jump label in code block start line (UpLine for short) and the key-
word in code block end line (DownLine for short). The jump label of the
code block is analyzed from the UpLine and the code blocks keyword
operation is analyzed from the DownLine. If there is no keyword or
jump label in the start line or end line of the code blocks, the other

instructions are recorded. For the code block zero, the UpLine is re-
corded as .locals 2 since there is no jump label in UpLine. The
DownLine is .prologue. Third, the lines of UpLine and DownLine in
the smali file. The lines record the information about the in-
strumentation position. For the code block zero, the line of UpLine is 2
and the line of DownLine is 3. After that, we continue splitting the code
block from line 4. The rest code blocks’ information are shown in
Table 2. Note that the smali code .line x (where x denotes the line
number) is not recorded as an instruction since it does not perform any
operation.

Step 3: CFG model construction. There are 3 steps for constructing
a CFG model. First, code blocks are modeled as CFG nodes. Then, we
construct the execution flows among different code blocks according
the UpLine and the DownLine. As shown in Table 2, there is an

Fig. 3. The life cycle of an Android activity.

Fig. 4. Typical smali code of the method field
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execution flow from code block 1 to code block 4. Finally, execution
flows among different code blocks are modeled as edges in CFG.

Step 4: main function and sub function classification. There are
four main components in Android system. Each component reacts to
user’s interactions using system default methods called Android life-
cycle method [27]. For example, when a user starts an Android appli-
cation, the method OnCreate() is executed. Developers overwrite the
Android life-cycle methods to response to user’s interactions. Thus, the
overwritten methods (AndroidLifeMethod for short) can be seen as
main functions. Other methods written by developers (DevpMethod for
short) invoked by the AndroidLifeMethod are seen as sub functions. In
this way, the AndroidLifeMethod and the related DevpMethod can be
profiled together.

5.3. Instrumentation model generation

There are two models to be instrumented in Android application:
the AdapTracer encoder model and the edge probability model. The
above two models are transformed into smali codes such that they can
be invoked by Android application directly.

Edge probability model. The edge probability model is a list that
has 5 elements: the method name combined with the class name (i.e.,
MainActivity_IFSense()Z), the edge’s start code block id, the edge’s end
code block id, the edge’s probability and the edge’s counter. The edge’s
counter (initialized to one) is used to record the edge’s execution fre-
quency. The AdapTracer encoder model updates the edge’s execution
frequency using the edge’s counter. We assign equal probability to
multiple out-edges as follows:

= ∀ ∈p e
outedge n

e outedge n( ) 1
( )

, ( )
(1)

Where n is a CFG node that has multiple out-edges. |outedge(n)| means
the number of the multiple out-edges of the CFG node n.

AdapTracer encoder model. There are five methods in AdapTracer
encoder model: Initial(), SetStartCodeBlock(), ATencoder(), ValueSelect
(), OverFlow(). The main method is ATencoder() and the details can be

found in Section 4.1. Initial() initializes the interval variables and de-
clares the current executed method’s name. SetStartCodeBlock() sets the
edge’s start code block id which can be used to construct the executed
edge for ATencoder(). ValueSelect() selects the minimal value within the
interval to denote the executed path. It is almost the same as the im-
plementation in the arithmetic coding library AMlib. In Encoder() and
ValueSelect(), the PathID may overflow when we profile large programs.
OverFlow() stores and resets PathIDs which are going to overflow. It is
instrumented in the instruction of interval scaling in Encoder() and
ValueSelect() [8] as shown in Algorithm 1. Once the PathID is going to
overflow, it is stored in list and reset to zero for the next encoding.

ValueSelect() is almost the same as the implementation in the ar-
ithmetic coding library AMlib. In Encoder() and ValueSelect(), the
PathID may overflow when we profile large programs. OverFlow() is
instrumented in the instruction of interval scaling in Encoder() and
ValueSelect() [8]. Once the PathID is going to overflow, it is stored in
list and reset to zero for the next encoding procedure. Initial() and
SetStartCodeBlock() are intuitive so we do not present them here.

5.4. Smali files instrumentation

Algorithm 3 shows the basic idea of AdapTracer instrumentation.
The instrumentation algorithm for AndroidLifeMethod and Devp-
Method is similar. The difference is that there is no instrumentation of
line 3 and line 14 for the DevpMethod because they are profiled to-
gether.

In line 1, the input parameter F is a CFG class type. getEntry() and
getExit() get the start code block and the exit code block of the current
method. getCodeBlockList() gets the list of all code blocks of the current
method. From line 2 to line 3, instrumentCodeBlock() instruments the
smali instruction of invoking Initial() at the address of entry’s
DownLine. From line 4 to line 12, we instrument the SetStartCodeBlock
() and ATencoder() at multiple out-edges of each code block. In line 8,
the smali instruction for invoking SetStartCodeBlock() is instrumented at
the address of start code block’s DownLine. In line 9, the smali in-
struction of invoking ATencoder() is instrumented at the address of end
code block’s UpLine. In line 14, the smali instruction of invoking
ValueSelect() is instrumented at the address of exit’s DownLine.

5.5. Recompiling smali files to APK

After all smali files are instrumented, we use apktool to recompile
the smali files to APK. Then, we can push and install the instrumented
APK on the mobile phone using adb [28].

Table 2
Code block information.

blockid UpLine (line) DownLine (line)

0 .locals 2 (2) .prologue (3)
1 const/4 v0, 0 × 1 (6) if-eqz v0, :cond_0 (9)
2 const/4 v1, 0× 1 (12) const/4 v1, 0 ×1 (12)
3 :goto_0 (15) return v1 (16)
4 :cond_0 (18) goto :goto_0 (20)

1: function Instru(CFG F )
2: CodeBlock entry = F .getEntry()
3: instrumentCodeBlock(entry,“Initial”)
4: for CodeBlock n in F .getCodeBlockList() do
5: int s = n.outEdgeCount()
6: if s > 1 then
7: for Edge e in n.getOutEdgeList() do
8: instrumentEdge(e.getStartCodeBlock(),“SetStartCodeBlock”)
9: instrumentEdge(e.getEndCodeBlock(), “ATencoder”)

10: end for
11: end if
12: end for
13: CodeBlock exit = F .getExit()
14: instrumentCodeBlock(exit, “ValueSelect”)
15: end function

Algorithm 3. The AdapTracer instrumentation algorithm.
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6. The design of TraceParser

TraceParser restores the paths from the trace log and the edge
probability model. In the first execution, the edge probability model
assigns equal probability to each edge, because we have no idea of each
edge’s execution probability. Then the new edge probability model is
generated according to the restored paths. Two copies of the new edge
probability model are generated. One is pushed to the mobile phone to
replace the instrumented Android application’s edge probability model.
Another is used to replace the PC side edge probability model for the
next path restoring.

6.1. Trace log analysis

After using the instrumented Android application for some time, the
trace log is produced. The file format of the trace log is a list and the
tuple of (methodname_classname, PathIDlist) are stored in the
trace log. The CFG information is obtained from the ATInstrumentor.
We can find the method’s CFG information according to the the method
name combined with the class name.

6.2. Execution paths restoration

After finding the corresponding method according to the method
name combined with the class name, the method’s CFG and the
PathIDlist are used in ATdecode to restore the execution path as shown
in Section 4.2.

6.3. Edge probability model calculation

According to the restored paths, the edge probability model can be
calculated easily. Two copies of the new edge probability model are
generated. One is pushed to the path of the instrumented Android ap-
plication. Another is saved at the PC side for the next path restoring.

7. Evaluation

The experiment is running on Google Nexus 4, which is equipped
with a 1.5GHz CPU and the 2GB of RAM. As shown in Table 3, we
conduct experiments in two sets of benchmarks: Java Grande Bench-
marks (JGF) [29] and a collection of Android applications from Google

Play. We select most downloaded Google applications with various
program structures. We have following two reasons for doing so: First,
testing most downloaded applications can evaluate whether Adap-
Tracer is practical and effective for profiling real-world applications.
Second, testing applications with various program structures can eval-
uate the performance of AdapTracer on various control flow char-
acteristics. The detailed CFG characteristics are shown in Table 3. Java
Grande Benchmarks have been transformed into Android applications
for our experimental tests. Different kinds of functions and CFG struc-
tures are contained in different JGF benchmarks. For example, JGFLoop
has lots of loops and JGFMath has different mathematical operations.
The CFG construction is based on the analysis of smali files which can
be obtained through apktool [26]. We include the top-eleven most
popular Android applications to evaluate the performance of Adap-
Tracer. There are different CFG structures in these Android applications
due to their different functions and the implementation style of devel-
opers. For example, “filemanager” is a file manager Android application
and there is a relatively large number of occurrences of the “switch-
case” construct in this Android application to response to user’s dif-
ferent actions toward the files. The user’s interactions with the mobile
phone are simulated by recording a sequence of specific interactive
events and replaying on the mobile phone.

7.1. Algorithm parameter selection

Fig. 5 shows the relationship between the inc and the trace size.
Note that the inc is related to the speed of matching the edge execution
probability as shown in Section 5. The horizontal axis refers to the re-
peat times of interactive events. We choose the JGFMath application
which is the most complex application of JGF in this experiment. Ac-
cording to our analysis of smali codes, JGFMath has 963 code blocks
and 1323 edges. Each loop performs different mathematical operations,
such as modulus, maximize, minimize, logarithm and etc. We set inc to
four different values from 1 to 4, which are labeled with 1-step to 4-step
in Fig. 5. From the results, we can find that the change of trace size is
the same as the 3-step. The bigger inc is, the more times the counter
would need to be narrowed. So the 3-step is used in our AdapTracer.
The experimental results also show that the trace size produced by
AdapTracer becomes smaller following the program’s execution. In
PAP, the trace size is still large no matter how many times the program
executes.

Table 3
CFG characteristics of benchmarks.

Application CFG nodes CFG edges Nodes with multi-outedges Max
outedges

Program size

JGFArith 193 341 50 2 0.08MB
JGFAssign 161 281 40 2 0.11MB
JGFCast 69 117 16 2 0.05MB
JGFCreate 507 673 49 2 0.14MB
JGFException 77 123 9 2 0.05MB
JGFInstrumentor 170 242 13 4 0.07MB
JGFLoop 53 89 12 2 0.05MB
JGFMath 963 1323 120 2 0.21MB
JGFMethod 258 338 24 2 0.07MB
JGFSerial 225 361 22 2 0.09MB
JGFTimer 136 160 5 4 0.07MB
filemanager 46793 68973 6909 55 4.3MB
tinyclip-boardmanager 3558 4738 335 9 1.4MB
duckduckgo 14853 20813 1905 12 3.6MB
QKSMS 58788 88074 8636 64 4.2MB
swiftnotes 1464 2060 187 2 1.1MB
mirakelandroid 69759 98079 8603 17 5.5MB
antennapod 20958 31724 3517 49 4.4MB
audiobook 6756 10268 1069 49 2.1MB
dashclock 7649 11133 1079 9 0.6MB
muzei 14227 21143 2294 14 1.8MB
net.osmand.plus 106183 178279 22777 32 51.8MB
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7.2. Space overhead

We evaluate the space overhead between AdapTrace and PAP on
modified JGF benchmarks and Android applications. As shown in Fig. 6
and Fig. 7, AdapTracer can achieve a consistently space-efficient com-
parison with PAP on both sets of benchmarks. Specifically, AdapTracer
significantly reduces trace size by 44% and 57.1% on average compared
with PAP in JGF benchmarks and Android applications respectively.
Because of the two characteristics, AdapTracer can effectively improve
the space efficiency: (1) Eliminating the overhead of recording CFG
node in breakpoint. (2) Adaptively compressing the trace size using
arithmetic code. Note that AdapTracer improves the space efficiency in
terms of the algorithm characteristics but not the language character-
istics. Therefore the space efficiency of 44% can carry over to other
programs using different languages but not only Java. AdapTracer can
save more space compared with PAP when the program size is larger
(e.g., improving larger space efficiency when profiling applications
from Google Play). Because in large size programs, PAP needs more
breakpoints and larger space for storing the CFG node ID. The 44% and
57.1% space efficiency is the averaged result over different program
size of JGF benchmarks and Google applications respectively. The trace
size is relatively small because of the short execution time (from 20s to
400s according to different applications), We run each application for a
sufficient time duration to validate the efficiency of AdapTracer. With
longer execution time the trace size will increase, however, the

improved space efficiency would stay almost same, because PAP is a
static approach. For AdapTracer, it adaptively assigns less trace size for
frequently executed paths.

7.3. Time cost

We also conduct an experiment to evaluate the time cost on two
datasets (e.g., modified JGF benchmarks and Android applications). As
shown in Figs. 8 and 9, AdapTracer only incurs execution overhead by
10% and 18% at most compared with PAP in modified JGF benchmarks
and Android applications respectively. The overhead mainly stems from
updating edge probabilities and the encoding interval. It is acceptable
for currently wide-used mobile phone.

8. Case study of common bugs

In this section, we discuss how to identify three common bugs that
occur in Android applications using AdapTracer: wasted computation
for invisible GUI bugs, frequently invoked callback bugs and SMS (Short
Message Service) security bugs. These bugs have been reported several
times in the literature [30]. They play a crucial role for the energy
saving and security of the Android system.

Fig. 5. Algorithm parameter selection.

Fig. 6. Space overhead in JGF benchmarks.
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8.1. Case 1: wasted computation for invisible GUI bugs

Bug description. This bug mainly comes from the carelessness of
developing Android applications without considering the Android life-
cycle. When an Android application switches to the background, the
invisible GUI may still be updated. Fig. 10 presents the example smali
code of a localization Android application. It lists the wasted compu-
tation bug and the corresponding bug-fixing patch. When this Android
application launches, it registers a location listener to receive the lo-
cation information to update its GUI (lines 6-8). The location listener is
normally unregistered when the activity is destroyed (line 31). How-
ever, when a user launches this Android application and then switches
it to background (Android OS will call onPause() or onStop(), but not
onDestroy()), this Android application will keep listening the location
information and updating the invisible GUI. As a consequence, the
battery power will be drained. To fix this bug, we modify two Android
life-cycle functions (i.e., OnResume() in lines 14-17 and OnPause() in
line 25) to eliminate the wasted computation for the invisible GUI.

Tracing. We can efficiently capture the fine-grained control flow
using AdapTracer, then further analyze works can be done by writing

simple scripts. For example, recording the execution time of every code
block. According to the specific behavior that is extracted from the
control flow trace, we can find the frequently invoked Android life-
cycle functions such as onPause() or onResume() and this suggests that
there maybe some wasted computations inside these control flow ac-
tions.

8.2. Case 2: Frequently invoked callbacks bugs

Bug description. To timely response to the user’s interactions,
these callbacks are frequently invoked by Android OS and need to be
light-weight. However, many such callbacks are ill-implemented in
real-world applications. They are heavy-weight and can significantly
slow down the Android applications. The typical example is the list
view handler callback (as shown in Figs. 11 and 12).

For the example shown in Figs. 11 and 12, there are two elements in
the listed item: a text label and an icon. Fig. 11 shows an inefficient
version which performs the two aforementioned operations (lines
11–14). Fig. 12 applies a “view holder” design pattern to schedule the
new and old list items. The basic idea is to reuse previously recycled list

Fig. 7. Space overhead in Android applications.

Fig. 8. Execution overhead in JGF benchmarks.
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items. It avoids list item layout inflation when there are recycled items
for reuse (line 11). Besides, when a list is constructed for the first time,
the references to its inner elements are identified and stored in a special
data structure (lines 13–19, data structure defined at lines 1–6). Later,
when reusing recycled items, these stored references can be used di-
rectly for updating content (lines 21–23), avoiding inner elements re-
trieval operations. By doing so, the computation overhead for inner
elements retrieval is reduced and the memory for constructing new list

Fig. 9. Execution overhead in Android applications.

Fig. 10. Example code of wasted computation for invisible GUI.

Fig. 11. Inefficient version of list view.

Fig. 12. Modified version of list view.
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items is saved.
Tracing. When testing an Android application that utilizes the list

view component, the control flow trace records the operational logic for
the list view. If the logic of callback function getView() is simple, it
implies that this application may have a frequently invoked callback
bug. There are many metrics to quantify the complexity of the im-
plemented function such as the execution time or the number of code
lines in this function. We can thus target the code line corresponding to
the control flow trace, and fix this bug using the efficient version as
shown in Fig. 12.

8.3. Case 3: SMS (Short Message Service) security bugs

Bug description. SMS (Short Message Service) security bugs are not
a vulnerability of the short message service. Instead, they are a typical
logic bomb trigger. Logic bomb is a kind of malicious application logic
that is executed or triggered only under certain circumstances.

As an example of the SMS security bugs, we present a navigation
application as shown in Fig. 13. It is meant to assist a soldier in the
battlefield to determine the shortest route to a given destination. It is
legitimate for this application to collect the GPS-related information
and send the information to the server. Then, results are received by the
application and displayed to the user. Assuming this application con-
tains another functionality that checks whether the current day is past a
specific date (line 14). If the current day is not past this date, this ap-
plication would give a shortest route as the user would expect (line 20).
Otherwise, this application would queries the network for a long route
(line 16). Thus, there is a SMS security bug, which may potentially
trigger the malicious behavior, in the code line of date check.

Tracing. With the traced control flow, we can find an unexpected
control flow when a specific specific SMS message is received at the
mobile phone. For example, setting a series of predefined expected
normal actions (e.g., a train of events) and comparing the difference
between the captured event train and the predefined normal event
train. The abnormal control flow in the trace reveals that there maybe a
potential malicious behavior. We can thus further exam the suspicious
code corresponding to the control flow branches to verify wether it is an
actual SMS security bug.

9. Conclusion

This paper presents AdapTracer, a path profiling approach based on
arithmetic coding. There are two salient features in AdapTracer. First, it
is space efficient by adopting a path profiling algorithm based on ar-
ithmetic coding. Second, it is adaptive by explicitly considering the
execution frequency of each edge. Experimental results show that
AdapTracer reduces the trace size by 44% on average and incurs ex-
ecution overhead by 10% at most compared to PAP.

AdapTracer can reduce the tracing overhead of frequent long ex-
ecution paths significantly, but the actual space usage may be the same
as PAP in profiling frequent short execution paths. Namely, for frequent
short execution paths, the PathID encoded in PAP may not overflow. No
matter how few bits AdapTracer produces, the actual space usage is
same with PAP. Therefore, our future work will focus on designing an
optimal algorithm to reduce the tracing overhead of profiling the fre-
quently short execution path.
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