
20984 IEEE INTERNET OF THINGS JOURNAL, VOL. 10, NO. 23, 1 DECEMBER 2023

Scalable and Interactive Simulation for IoT
Applications With TinySim

Gonglong Chen , Wei Dong , Member, IEEE, Fujian Qiu, Gaoyang Guan ,
Yi Gao , Member, IEEE, and Siyu Zeng

Abstract—Recent years, the rapid development of Internet of
Things (IoT) technologies and applications have been witnessed.
Three important features are characterized in modern IoT appli-
cations: 1) device heterogeneity; 2) long-range communication;
and 3) cloud/edge-device integration. Difficulties are raised by the
above features toward IoT application developers, e.g., predicting
and evaluating the performance of the entire IoT application
system. To deal with the above difficulties, we design and imple-
ment an IoT simulator, TinySim, which satisfies the requirements
of high fidelity, high scalability, and seamless transplantation.
TinySim takes advantage of the hardware-independent features
of TinyLink programming language. Hence, a similar code can
be used for both simulation and execution on real hardware plat-
forms. Many virtual IoT devices can be simulated by TinySim at
the PC end. These IoT devices can send or receive messages from
the cloud or smartphones, making it possible for the developers
to evaluate the entire system without the actual IoT hardware.
We connect TinySim with Unity 3-D to provide high interac-
tivity. To reduce the event synchronization overhead between
TinySim and Unity 3-D, a dependence graph-based approach is
proposed. We design an approximation-based approach to reduce
the number of simulation events, greatly speeding up the simu-
lation process. We carefully evaluate TinySim using benchmarks
and two concrete case studies. TinySim can simulate representa-
tive IoT applications, such as smart flowerspot and shared bikes.
We conduct extensive experiments to evaluate the performance
of TinySim. Results show that TinySim can achieve high accu-
racy with an error ratio lower than 9.52% in terms of energy
and latency. Further, TinySim can simulate 4000 devices within
11.2 physical-minutes for ten simulation-minutes, which is about
3× faster than the state-of-art approach.

Index Terms—Interactive development, Internet of Things
(IoT), scalability, simulation, speculative execution.

I. INTRODUCTION

THE RECENT years have witnessed the rapid devel-
opment of Internet of Things (IoT) technologies and

applications [1]. Compared with early IoT systems like sensor

Manuscript received 8 March 2023; revised 12 April 2023 and 25 May
2023; accepted 4 June 2023. Date of publication 16 June 2023; date of current
version 21 November 2023. This work was supported in part by the National
Key R&D Program of China under Grant 2019YFB1600700; in part by the
National Natural Science Foundation of China under Grant 62072396 and
Grant 62272407; in part by the “Pioneer” and “Leading Goose” R&D Program
of Zhejiang Province under Grant 2023C01033; and in part by the National &
Zhejiang Provincial Youth Talent Support Program. (Corresponding author:
Wei Dong.)

The authors are with the College of Computer Science and the Alibaba-
Zhejiang University Joint Institute of Frontier Technologies, Zhejiang
University, Hangzhou 310027, China (e-mail: desword@zju.edu.cn; dongw@
zju.edu.cn; qiufj@zju.edu.cn; ggy@zju.edu.cn; gaoyi@zju.edu.cn; zengsy@
zju.edu.cn).

Digital Object Identifier 10.1109/JIOT.2023.3285244

networks [2], [3], modern IoT systems are characterized by
the following important features.

1) Device Heterogeneity: IoT devices become increasingly
heterogeneous, including both resource-constrained
devices like MSP430 and much more capable devices
like Raspberry PI.1

2) Long Range Communication: Low power wide area
networks (LPWAN), e.g., NB-IoT [4] and LoRaWAN [5]
are widely considered promising technologies to
interconnect a vast number of IoT devices into the
Internet.

3) Cloud/Edge-Device Integrated: For example, the
Mobike bicycle sharing system, consisting of more
than five million orange-colored bicycles with smart
locks,2 is a representative IoT application. A Mobike
smart lock is an IoT device that interacts with users via
smartphones and tracks users’ trajectory by continu-
ously transmitting location information to the cloud. As
such, the entire Mobike application uses an architecture
consisting of the IoT device (smart lock), the cloud (for
management), and the smartphone (for interaction with
users). Note that the cloud servers can be also replaced
with other similar services, e.g., the edge services.
Especially under the delay-sensitive scenario, the edge
server can provide shorter response latency.

Developers are often confronted with difficulties in imple-
menting a real-world IoT application. For example, developers
may have difficulties in evaluating the entire application before
the IoT devices are designed and deployed. Unlike PCs and
smartphones, IoT devices are special ones which vary with
different applications. Hence, the design takes time.

The above difficulties would be tackled by using an accurate
and scalable IoT simulator. With its availability, IoT develop-
ers can quickly simulate the entire application and evaluate
the feasibility of their innovative ideas.

Unfortunately, existing simulation tools are insufficient and
cannot help answer the above questions [6], [7], [8]. Existing
IoT simulators, such as SmartThings [9], Seebo [10], and
IOTIFY [11], only provide simulation at the functionality level
for the IoT device, and cannot capture the detailed timing and
energy performance. Embedded simulators, such as Avrora [6],
PoLite [8] albeit accurate in simulating the device level behav-
iors, suffer from low simulation speed and thus cannot scale

1https://www.raspberrypi.org
2China’s Mobike raises U.S. $600M to expand its bikes on-demand service

worldwide, https://techcrunch.com/2017/06/15/mobike-raises-600-million/.

2327-4662 c© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Tencent. Downloaded on November 23,2023 at 12:33:19 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-7833-6458
https://orcid.org/0000-0003-0498-1494
https://orcid.org/0000-0003-1191-4687
https://orcid.org/0000-0001-7897-5965

CHEN et al.: SCALABLE AND INTERACTIVE SIMULATION FOR IoT APPLICATIONS WITH TinySim 20985

to a large number of IoT devices in a typical system. Existing
sensor network simulators, e.g., EmStar [7], usually simulate a
multihop wireless network and thus lack support for LPWAN
protocols. Existing wireless or network simulators (e.g., ns-2
[12], ns-3 [13], NetSim [14], and OMNeT++ [15]) albeit
accurate in simulating the networking behaviors, lose accuracy
in simulating device-level behaviors.

In this article, we aim to design and implement a sim-
ulator for modern IoT applications satisfying the following
requirements.

1) High Fidelity: The simulator should capture the device-
level behaviors in a fine-grained manner. Otherwise,
it is impossible to evaluate the timing and energy
performance of the system.

2) High Scalability: Future IoT systems would consist of a
vast number of IoT devices. The simulator should exe-
cute at a high speed and can scale to many IoT devices.

3) High Interactivity: The simulator should provide a user-
friendly debug and program UI. Developers can conve-
niently create scenarios or change environments to trig-
ger events to verify the functionality of IoT applications.

We have designed and implemented TinySim, to meet the
above requirements. To use TinySim, the developer writes a
device code in a hardware-independent language, TinyLink
language, which can be directly used for our simulation. The
use of TinyLink code also allows us to capture fine-grained
device-level behaviors. We map TinyLink code into hardware-
dependent instructions without actually running them. This
approach allows us to obtain high fidelity without overhead
to execute the instructions.

To increase scalability, we propose an approximation-based
approach to reduce the time-consuming events, e.g., the trans-
mission events and the collision events. The behaviors of the
time-consuming events are trained using a machine algorithm,
e.g., long short-term memory (LSTM) [16]. The results (e.g.,
the transmission delay) after executing events are predicted by
the machine learning algorithm. The simulation speed is fur-
ther sped up by distributing events to many machines. TinySim
supports common LPWAN protocols, including NB-IoT [4]
and LoRaWAN [5]. We have also provided a development
framework based on a state machine language state map
compiler (SMC) [17] to facilitate incorporating other IoT
protocols.

To provide the high interactivity, we connect TinySim with
a powerful gaming engine Unity 3-D [18]. The different sim-
ulation speeds of TinySim and Unity 3-D lead to the large
overhead of the event synchronization. It also makes existing
simulators incapable of being integrated directly. To deal with
this problem, we propose a dependence graph-based approach
to reduce the synchronization overhead while maintaining a
good programming experience.

The contributions can be summarized as follows.
1) We design and implement TinySim, a simulator for mod-

ern IoT applications, satisfying three requirements of
high fidelity, high scalability, and high interactivity. We
have open sourced our simulation code at [19].

2) We propose an approximation-based approach that can
reduce the number of simulation events to accelerate

the simulation speed. With the improved simulation
speed, TinySim achieves larger scalability. The simu-
lation speed is further improved by distributing simu-
lation tasks to multiple machines. With our technique,
TinySim can support 4000 simulated devices using eight
machines.

3) We have connected TinySim with a powerful virtual sce-
nario engine, Unity 3-D. The developers can create IoT
application easily. Through carefully designing an event
synchronization approach for TinySim and Unity 3-D
that accepts actions from the real world, the developers
can also interact with the simulated devices using the
real-world smartphone. The above features enable more
interactive IoT application development.

4) We extensively evaluate TinySim using benchmarks
and two concrete case studies. Results show that:
a) TinySim can simulate representative IoT applica-
tions and b) TinySim can achieve high fidelity at the
device end. TinySim can now simulate three mainboards
(Arduino UNO, Raspberry Pi 2, and BeagleBone Black),
six frequently used peripherals and two communica-
tion protocols (NB-IoT and LoRaWAN) with simulation
error at most 9.52%.

II. RELATED WORK

This section reviews existing simulation tools in the areas
of IoT, embedded sensor networks, and wireless networks.

Simulation Tools for IoT: SmartThings [9] and Seebo [10]
are IoT development platforms based on Web-IDE. To validate
the functionality of IoT applications, they provide a simulator
that can present sensed information by generating virtual data.
However, the functions provided by the above simulator are
rather limited in developing real IoT applications considering
device constraints and user requirements. For example, mini-
mizing the power consumption for a smart spot while meeting
monitoring requirements.

IOTIFY [11] and BevyWise [20] are IoT cloud platform
simulation systems. By setting the network conditions (e.g.,
jitter time), developers can evaluate the device accessing
delay when using different IoT message exchange protocols
(e.g., MQTT [21]). IoTSim [22] simulates the performance of
MapReduce-based cloud computing network when connecting
a large number of IoT devices. EdgeMiningSim [23], [24] is a
simulation-driven methodology for enabling IoT Data Mining.
Such a methodology drives the domain experts in disclosing
actionable knowledge, namely, descriptive or predictive mod-
els for taking effective actions in the constrained and dynamic
IoT scenario. TinySim simulates an IoT system not only at
the network level but also at the device level. The device level
simulation consists of fine-grained activities, such as timing
behaviors and power profiles.

Simulation Tools for Embedded Sensor Networks:
TOSSIM [25] is a discrete event simulator using a
probabilistic bit error model for network simulations.
PowerTOSSIM [26] and TimeTOSSIM [27] extend TOSSIM
to provide detailed energy consumption models and timing
behavior profile. Simwet [28] is a TOSSIM-based simulator

Authorized licensed use limited to: Tencent. Downloaded on November 23,2023 at 12:33:19 UTC from IEEE Xplore. Restrictions apply.

20986 IEEE INTERNET OF THINGS JOURNAL, VOL. 10, NO. 23, 1 DECEMBER 2023

provides a power consumption model for energy harvesting
and transfer scenarios. EmStar [7] offers a range of runtime
environments from simulations to actual deployments.
TinySim also integrates the simulated (e.g., the IoT devices
and the base station) and the real devices/servers (e.g., the
smartphone and the cloud) in the IoT application system. In
fact, TinySim and EmStar are orthogonal, and the differences
are that the two simulators place the real part at different
positions. For example, TinySim can also replace one of the
simulated devices with the real devices by carefully designing
the incorporating interfaces. By providing the replaceable
components, it is possible to improve the fidelity of the
specific IoT devices. The above simulators only target at
multihop wireless protocols, which is rather not enough for
simulating heterogeneous IoT applications. To tackle this
problem, we propose a development framework for simulating
various wireless protocols.

Avrora [6] is a cycle-accurate instruction-level sensor
network simulator. PoLite [8] improves the simulation effi-
ciency by reducing the synchronization interval at radio-level
and MAC-level. D-SnapSim [29] skips all thread synchro-
nization and just executes threads. When erroneous simu-
lation results are found, they will rollback and re-execute.
Different from the above simulators, TinySim utilizes a
machine learning-based approach to reduce the number of sim-
ulation events. Moreover, the simulation is further sped up by
distributing simulation tasks to multiple machines.

Cooja [30] is a simulator for Contiki OS [3]. It enables
cross-level simulation, including the network level, the oper-
ating system level, and the instruction level. However, the
individual node is always simulated at one of these levels.
It means that Cooja still holds the drawback of each level
simulation, e.g., lack of high fidelity at the network level and
losing efficiency at the instruction level. Different from Cooja,
TinySim not only achieves high fidelity by capturing fine-
grained device behaviors but also maintains high efficiency
with a distributed simulation approach.

Simulation Tools for Wireless Networks: LoRaSim [31]
is a simulator for LoRaWAN [5] and it captures specific
LoRa link behaviors such as collision. TinySim can simu-
late both NB-IoT and LoRaWAN. Different from LoRaSim,
TinySim simulates an entire IoT system and LoRaSim can be
incorporated into TinySim as a component. NetSim [14] and
OMNeT++ [15] are all network-level simulators. They pro-
vide a wide range of network protocol simulation. However,
it is not fine-grained enough to profile detailed IoT device
behaviors such as the MCU timing behaviors. ns-2 [12] and
ns-3 [13] are also network-level simulators and provide power
profiling and time profiling with plugins, however, they can
not support heterogeneous hardware.

Table I compares various approaches concerning five key
desired features.

1) Power Profile: Power is an important factor, especially
for resource-constrained IoT devices.

2) Time Profile: Accurate timing behavior profiling is of
importance for analyzing IoT application performance.
The simulator should support the above two profiles to
provide high fidelity.

TABLE I
RELATED WORK COMPARISON

3) Virtual Scenario: Providing an interactive programming
interface is also important for creating IoT applications
associated with scenarios. Note that several simula-
tors can only partially support scenarios because they
can only change the position of wireless devices, but
not people. The ability to create virtual scenarios can
provide higher interactivity for the developers.

4) High Speed: It is important to scale to a vast number
of IoT devices. With higher simulation speed, the sim-
ulator can support more devices, thus achieving larger
scalability.

5) Heterogeneous H/W Support: IoT applications consist
of various hardware components and it is thus of
importance to support heterogeneous hardware.

III. TINY LANGUAGE

TinySim Is a New Programming Style: Our design can be
used in many discrete event-based simulator. We can use
Arduino-like programming language to program IoT applica-
tions. We utilize Tinylink language as an example.

Tiny language is a hardware-independent programming lan-
guage that enables the rapid development of IoT applications.
We have designed our Tiny language compiler to produce effi-
cient code for several IoT platforms, e.g., Arduino, Raspberry
Pi, and BeagleBone. In addition, Tiny language provides APIs
to easily connect to mainstream IoT cloud platforms, including
Ali IoT Cloud [32] and IBM Watson [33].

Fig. 1 shows an example of Tiny language code for an
IoT application that monitors the environment of a house-
plant. The application periodically samples and updates soil
data into the cloud via NB-IoT [4]. Function setup() is
used to initialize the parameters of establishing the connec-
tion of NB-IoT module (lines 3–6). Function loop() is used

Authorized licensed use limited to: Tencent. Downloaded on November 23,2023 at 12:33:19 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: SCALABLE AND INTERACTIVE SIMULATION FOR IoT APPLICATIONS WITH TinySim 20987

Fig. 1. Application code using Tiny language.

Fig. 2. Example of simulation configuration (env.json).

to periodically sample soil data, and upload the data into the
cloud via NB-IoT (lines 9–11). By setting the necessary con-
figurations (e.g., device ID, product ID, and token) on the
cloud, the IoT application can connect and upload data to the
cloud. The soil data is uploaded into the cloud via proper set-
ting of hostname and data structure (lines 17–19). Note that
TL_DBG() is used for printing debug information and will
be ignored when compiling the code into a real device.

IV. TINYSIM USAGE

In this example, we present how to simulate a smart flower
spot application monitoring the moisture of a houseplant. This
application collects sensing data to the cloud and displays the
data on smartphones.

Step 1 (IoT Application Development): The developer can
use and configure existing IoT cloud, e.g., IBM Watson. The
IoT cloud serves as a bridge between the IoT device and the
smartphone. The developer can also develop mobile apps for
displaying the sensing data. Most importantly, the developer
can use Tiny language to develop IoT applications (App.cpp)
at the device end in a hardware-independent manner (e.g., as
shown in Fig. 1). The developer can upload the application
code to the TinySim cloud via “TinySim -a App.cpp.”

Step 2 (Simulation Configuration): The developer can set
the simulation configuration as shown in Fig. 2. TinySim
provides a series of useful settings for developers. For exam-
ple, the developer can set the attribute “area” to limit the
range of areas that IoT devices and gateways will be ran-
domly placed (e.g., 1000 m × 1000 m area). To print the
log information, the developer can add values to the attribute

Fig. 3. Network architecture of simulated entire IoT applications in TinySim.

“channel.” The attribute “hardware” is used for enabling the
tracking of timing behavior and power consumption of the
corresponding hardware.

Step 3 (Execute the Simulation): The simplest way for the
developer to execute the simulation is “TinySim -r.” Then,
TinySim will not stop running the application at the cloud
until the developer sends “TinySim -s.” The developer can
also define the running time on the simulation by “TinySim
-r -t 3600” (it means executing one simulation-hour). After
finishing the simulation, TinySim would output the debug
information and the profile of the hardware enabled in the
configuration file (env.json).

TinySim also supports the interactions between real mobile
devices and the simulated IoT devices. The developer needs
to write a proper event handler for dealing with the arrival
messages from mobile devices (a concrete example will be
shown in Section IX). To enable this execution mode, the
developer can send the command “TinySim -r -m REAL.”
By default, the simulation is executed with simulated mobile
devices (VIRTUAL mode).

Step 4 (Interact With the Simulation): The developer can
enter the interactive mode by sending “TinySim -r -debug”
With the parameter “-debug,” the developer can debug the
application step by step. The interactive commands are simi-
lar with gdb. The developer can also inspect devices’ profiles
by sending “TinySim -r -i.” For example, when the developer
sends “ShowHWState -t 2,” in the example shown in Fig. 1,
states of NB-IoT are periodically changed between SEND and
SLEEP.

V. OVERVIEW

A. TinySim Network Overview

Fig. 3 depicts the network architecture of TinySim, which
covers most of a typical IoT application, i.e., the devices, the
base station, the cloud, and the smartphone.

The Communication Links Between Devices and the Base
Station: TinySim provides the simulated communication links
between the devices and the base station. Currently, TinySim
supports the two most promising LPWAN technologies:
1) NB-IoT and 2) LoRaWAN. Because the implementation
of NB-IoT is closed source, we implement most of the key
procedures in NB-IoT according to the 3GPP definition [4].
LoRaWAN is open source [34] and we reuse most of the
source code. The hardware component is replaced with the
simulated version (e.g., the radio and ADC).

Authorized licensed use limited to: Tencent. Downloaded on November 23,2023 at 12:33:19 UTC from IEEE Xplore. Restrictions apply.

20988 IEEE INTERNET OF THINGS JOURNAL, VOL. 10, NO. 23, 1 DECEMBER 2023

Fig. 4. Overview of TinySim architecture.

The Communication Links Between the Base Station and
the Cloud: This is simulated using the real Internet via wired
connections between the PC and the cloud. It is a simple but
effective approach especially under certain scenarios [35], e.g.,
the predictable delay at midnight.

The Communication Links Between the Smartphone and the
Cloud: For this link, TinySim supports both the real mode and
the simulated mode. For the reality mode, by installing the cus-
tomized Android application, the developer can send messages
to the cloud via WiFi using an application layer protocol (e.g.,
CoAP [36]). With an appropriate message handler imple-
mented in the IoT devices, the developer can interact with the
devices via the cloud. For the simulated mode, TinySim sim-
ulates the behavior of sending messages to the cloud from the
smartphone. In this article, we focus on modeling the impor-
tant behaviors of the IoT devices and assume the link quality
between the smartphone and the cloud is favorable in most
cases.

In TinySim, the Cloud part is connected with real services
since the services are now mature and easy to configure and
deploy through buying the services from the provider, e.g., the
Ali Cloud, Tencent Cloud, etc. With real services, the simula-
tion can be more accurate. On the other hand, the deployment
of the base stations may be difficult for developers especially
those provided by the operators. For the smartphone, TinySim
provides two options for developers to use in the simula-
tion, i.e., the interactive experiments between the simulated
devices and the real smartphone APP, or the scalable exper-
iments using simulated smartphone. The design goal of the
integrated TinySim is to improve simulation accuracy, while
making the IoT application simulation easy.

B. TinySim Architecture Overview

Fig. 4 presents the overview of the TinySim architecture.
TinySim is based on the discrete event execution model. All
of the behaviors are abstracted as events (e.g., communication
between IoT devices, capturing sensor data, etc.) and fed into
the TinySim-core to schedule the execution of the events.

1) Event Engine: Event Generation: TinySim is a discrete
event simulator. The events are generated by the hardware-
independent function or the hardware-dependent components.
The hardware-independent functions are directly separated by
the event handler and inserted into the event queue. For the
hardware-dependent components, TinySim generates random
events following the data generation model (e.g., the illu-
mination data for light sensors). The data generation model

is obtained from real-world traces. The hardware-dependent
functions (e.g., function read() of the light sensor) are replaced
with the version that can be executed at the PC.

Interruption Simulation: Interrupts can be triggered by the
hardware components (e.g., the mainboard) or other commu-
nication parts (e.g., the smartphone). When the interrupts are
from the hardware components (e.g., the clock), it is inserted
into the discrete event queue directly by the event scheduler. To
capture the clock drift due to the interrupt events, we estimate
the elapsed time of the interrupt execution at the instruction
level. The drifted clock is then compensated by the estimated
execution time. For the interrupts from the other communica-
tion part, TinySim simulates the interrupts by generating the
random events following the data generation model (e.g., the
CoAP messages from the smartphone). The data generation
model is obtained from real-world traces.

2) Expressive User Interface: We connect TinySim-core
with an expressive UI, Unity 3-D [18], to provide a bet-
ter development experience for IoT application developers.
Developers can simply add new modules and debug the IoT
application interactively. TinySim-core captures key events
(e.g., the changes on the light) generated from the Unity 3-D
engine through the interface (as described in Section VI).
There are inconsistences between Unity 3-D and TinySim-
core due to different execution speed. Therefore, we provide
a speculative event synchronization approach to eliminate the
inconsistences while minimizing the synchronization overhead
(as detailed in Section VI).

3) TinySim-Core: The TinySim-core plays an important
role on scheduling the discrete events. It handles the events not
only generated from the application codes written by devel-
opers but also from the Unity 3-D. All the above generated
events are fed into the TinySim-core scheduler. TinySim-core
provide three types of event scheduler: 1) the ML-based simu-
lation approximation; 2) the distributed simulation; and 3) the
FIFO scheduler (as detailed in Section VII). The ML-based
simulation approximation approach can improve the simu-
lation speed of the communication-related events. We train
an offline model to directly predict the performance results
of the communication behaviors. The distributed simulation
scheduler utilizes multiple machines to execute the events
concurrently.

The design goal of TinySim is to provide developers the
estimated evaluation results of the delay, the packet reception
ratio (PRR), the energy consumption, and the detailed tim-
ing of hardware states (e.g., the transmission, the reception,
the sleep, etc.). To this end, TinySim translated the execution
results of the above events into the final performance metrics.

In the next, we will detail the important modules of
TinySim, e.g., the interactive development with the virtual
scenario creation and the scalable simulation.

VI. INTERACTIVE VIRTUAL SCENARIO

One of the most attractive features of TinySim is the vir-
tual scenario creation. With this feature, developers can easily
create scenarios and rapidly verify the ideas of IoT applica-
tions. The efficiency of the simulation development is impor-
tant for pre-examing the IoT applications before large scale

Authorized licensed use limited to: Tencent. Downloaded on November 23,2023 at 12:33:19 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: SCALABLE AND INTERACTIVE SIMULATION FOR IoT APPLICATIONS WITH TinySim 20989

deployment. The ability to create IoT scenarios is difficult in
the current IoT development. With a representative develop-
ment platform, the developers can create IoT scenarios easily,
and produce better IoT applications targeting at the specific
scenarios. To this end, we connect TinySim with Unity 3-D,
a powerful cross-platform game engine [18]. Now, two typi-
cal scenarios are supported in TinySim: 1) the room scenario
with furniture (indoor) and 2) the city scenario with buildings
and trees (outdoor). More scenarios will be extended in the
future.

The unique features supported by TinySim are that the
developers can not only run simulated IoT applications in
the virtual scenarios but also interact with the simulated IoT
devices using real-world devices. With the hybrid interaction
scheme, the developers should examine the functionalities of
IoT applications before large scale deployments, especially for
the IoT applications involving the smart phones (e.g., the smart
home applications that enable the interactions through users).
Therefore, it is important to achieve real time and high fidelity
virtual scenario functionalities, which are very different from
existing simulators that only run simulated applications in
simulated environments but not a hybrid simulation involving
interactions between the simulation world and the real world.
Providing such a powerful programming interface, however,

faces several challenges. First, to ensure the correctness of the
simulation, the sensor data simulated by TinySim should be
reasonable when presented in Unity 3-D. For example, the
illumination sensed by TinySim should be a small value when
the light sensor is placed under the shadow area of Unity 3-D.
Second, due to the different execution speeds between Unity
3-D and TinySim, we shall carefully design an event synchro-
nization approach to ensure the correctness and reduce the
simulation overhead.

A. Environment Emulation

To ensure that the sensor data is reasonable at both TinySim
and Unity 3-D, We divide the sources of sensing data into three
categories.

Sensing Data From Unity 3-D: The sensor data is actually
maintained in Unity 3-D. TinySim directly requests the sensor
data from Unity 3-D engine.

Before the data is returned from Unity 3-D, the execution
of TinySim is blocked.

Sensing Data From the Existing Model: TinySim takes the
data distribution model from existing works. And, TinySim
will periodically inform Unity 3-D to update the data
presentation when the sensor data is changed. For example,
there is an existing model for PM 2.5 [37], and it takes parame-
ters related to the environments, e.g., the wind speed, the wind
direction, and the temperature.

Sensing Data From the Trained Model: It is similar to the
second source, the difference is that the sensor data distribu-
tion model is trained from trace using a fitting algorithm, e.g.,
closest-fit pattern matching [38].

B. Interactivity Problems Between Unity 3-D and TinySim

The execution speed of Unity 3-D engine and TinySim are
different. The event inconsistency may occur when developers

change the environment of Unity 3-D, e.g., TinySim turned
on the lamp at the simulated time T0 but Unity 3-D may
reach at T0 latter and allow the developer to turn it off man-
ually. To ensure the simulation correctness, an efficient event
synchronization approach is important.

Drawbacks of Existing Approaches: In existing parallel sim-
ulators [8], [29], threads stop at known functions (e.g., send,
receive, and channel sampling) to synchronize events. For
example, in CSMA mechanism, the thread simulating the
transmitter stops at the channel sampling function at the time
T0 and waits for other threads simulating neighbors to arrive
at T0 to safely judge whether the channel is free. However,
in the scenario of synchronizing Unity 3-D and TinySim,
there are no known functions to be waited for. Because the
unsynchronized events are mostly caused by developers’ inter-
actions in Unity 3-D, which are unpredictable. There are
also approaches [6], [7] performing synchronization per given
interval. However, the proper interval is relatively hard to be
determined. For example, a longer synchronization period will
cause a larger rollback overhead if the event inconsistencies
exist. On the other hand, a shorter synchronization period leads
to significant overhead of message exchanging frequently.

To ensure the simulation’s correctness while maintaining
efficiency, we propose a speculative approach to synchronize
the events. TinySim is enabled to run always faster than Unity
3-D following the default scenario settings and interaction
logics. When interactions from Unity 3-D violates the execu-
tion logic speculatively processed by TinySim, we let TinySim
selectively roll back the events based on a dependency graph,
i.e., the events that violate the data value or the control flow
caused by the Unity 3-D interactions. The speed and the
simulation accuracy are traded at a good balance.

Two natural questions arrive: 1) How to build the depen-
dency graph? and 2) How to reduce the rollback overhead?

C. Speculative Event Synchronization: Dependency Graph
Construction

TinySim adopts the following approach to construct the
dependency graph (See Fig. 5).

1) In a dependency graph, the vertex denotes the events,
e.g., TL_Fan.open().

2) The edge denotes that there are relationships between the
vertices in terms of the data flow or the control flow.
Given the direction from the event A to the event B,
for the data flow, it means that after reading/writing the
memory M by the event A, the event B will write/read
the same memory M later. It is the common resource
race definition in parallel execution, i.e., read-after-write
(RAW), write-after-write (WAW), and write-after-read
(WAR) [39]. As for the control flow, it indicates that
there is a conditional jump or direct jump from the event
A to the event B. We utilize the control flow analysis
tool to construct the edges between the vertices, e.g.,
taint analysis [40].

3) The dependency graph is constructed at the compile
time, therefore the construction procedure will not incur
overhead when TinySim is running.

Fig. 5(b) shows an example dependency graph extracted
from the application code shown in Fig. 5(a). It is a smart

Authorized licensed use limited to: Tencent. Downloaded on November 23,2023 at 12:33:19 UTC from IEEE Xplore. Restrictions apply.

20990 IEEE INTERNET OF THINGS JOURNAL, VOL. 10, NO. 23, 1 DECEMBER 2023

(a)

(b)

Fig. 5. Illustrative example of constructing a dependency graph from
the application code. Vertex: The event. Edge: Data or control depen-
dence. (a) Code snippets of the smart fan application and TLFan module.
(b) Dependency graph analyzed from the code (a).

(a) (b) (c)

Fig. 6. Roll back execution example. (a) TinySim runs faster than Unity 3-D.
(b) Changing the human’s position, resulting in an infrared change. (c) Only
keeps the events that will change the original flow.

fan application that lets the fan equipped with a temperature
sensor and an infrared sensor. The smart fan is only turned
on when people are detected nearby and the temperatures are
greater than 30 [shown in line 2 of Fig. 5(a)]; otherwise, the
smart fan is shutdown. The people is detected when the read-
ing of the infrared sensor is greater than the threshold. The
detection function performs periodically with the Interval.

As shown in Fig. 5(b), the vertex labeled with the
same color means they access the same data object. For
example, TL_Temperature_Sensor.get() reads the
global data structure temperature to return the sens-
ing data, while TL_Fan.open() modifies the value in
temperature since it will cool down the temperature. The
solid line denotes the control flow dependency, while the
dotted line indicates the data flow dependency. For exam-
ple, the line from TL_Temperature_Sensor.get() to
TL_Fan.open() is generated since there is a conditional
jump between them [shown in lines 2 and 3 of Fig. 5(a)].

D. Speculative Event Synchronization: Rollback Overhead
Reduction

Based on the dependency graph, TinySim reduces the
rollback overhead following the approach below (see Fig. 6).

1) When there is an interaction from Unity 3-D, TinySim
analyzes which data objects are affected by the
interaction. For example, when developers turn on
the fan in Unity 3-D, it leads to the changes in
the temperature objects. Note that the relationship
between the interaction and the affected data objects can
be setup off-line.

2) TinySim looks in the event queue for the event that is
the closest to the current trigger point in the simula-
tion time and operates on the same data object. The
event is set as the starting event in the dependency
graph.

3) TinySim begins from the starting event and labels the
affected events based on the dependency graph. The
above procedures are performed iteratively until the sim-
ulated time in TinySim.

4) To further reduce the rollback overhead, TinySim only
keeps the events that will cause a flow change following
the directions in the dependency graph. The changes can
be the data change or the control flow considering the
edge type. For example, the readings of the temperature
sensor will do change because the fan is turned on.

For the example shown in Fig. 6(a), the unity 3-D exe-
cutes at the simulated time T0 and TinySim is at T6. At this
point, suppose that the people is already near the fan and the
temperature is still larger than 30, therefore the fan has been
turned on.

Assume that the developer changes the human’s posi-
tion in the Unity 3-D but still near the fan [see Fig. 6(b)].
Therefore, the interaction arrives at the simulated time T0
and it will affect the value of infrared object. The first
event of Temperature.get() is thus skipped since it
is only related to the temperature object. And, the next
event in the queue Human.isNearBy() is labeled and set
as the starting event in the dependency graph. Then, fol-
lowing the direction of the dependency graph, three events
are labeled: 1) Infrared.get(); 2) Fan.open(); and
3) Temperature.get(). To further reduce the rollback
overhead, only two events are kept: 1) Human.isNearBy()
and 2) Infrared.get() [see Fig. 6(c)]. Because the
results of the conditional jump does not change from
the Infrared.get(). The analysis is done and finally,
TinySim only needs to roll back and re-execute the events
of Human.isNearBy() and Infrared.get() to update
the data object infrared.

The above approach has the following features. First, com-
pared with existing parallel simulators which roll back all
events to maintain the simulation correctness, TinySim can
fall back only a small number of affected events based on the
dependency graph, which greatly improves the efficiency of
virtual scenario development. Second, the proposed approach
provides an on-demand synchronization scheme. The synchro-
nization is triggered only when the violated execution results
caused by Unity 3-D interactions are detected. Compared with
the existing periodic event synchronization scheme [6], [7], the
efficiency is greatly improved. Third, the approach deliberately
makes Unity 3-D run slower than TinySim, which reduces
the frame drop rate of Unity 3-D, and thus provides a better
development experience.

Authorized licensed use limited to: Tencent. Downloaded on November 23,2023 at 12:33:19 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: SCALABLE AND INTERACTIVE SIMULATION FOR IoT APPLICATIONS WITH TinySim 20991

Fig. 7. Simulation breakdown in terms of components. The radio medium
module occupies the most time portion (e.g., over 70%).

VII. SCALABILITY

High scalability is important for simulators to handle large
networks with thousands of IoT devices. One of the main fac-
tors that affect the simulation scalability is the number of
time-consuming simulation events, which is increased with
the number of simulated devices. TinySim utilizes a machine
learning-based approach to reduce the number of simulation
events. Moreover, TinySim can further speed up the simulation
by distributing simulation tasks to multiple hosts.

A. Simulation Speed Bottleneck Analysis

The Bottleneck of the Existing Simulators: To understand
the bottlenecks that affect the large-scale simulation, we con-
duct experiments to obtain a time breakdown of three typical
existing simulators (i.e., Cooja, OMNET++, and NS-3) and
TinySim in terms of different simulation components. Three
existing simulators simulate an 802.15.4 multihop network to
collect sensor data. As the number of simulated devices rises,
the number of devices per hop gradually increases. TinySim
simulates an NB-IoT network. As the number of nodes devices
rises, the number of devices managed by the base station
increases.

Fig. 7 presents the top four modules that spend the sim-
ulation time: 1) radio medium; 2) instruction simulation;
3) discrete event management; and 4) network simulation.

1) Radio Medium: It simulates how devices communicate
over the channel via different radio technologies. Typical
functions like channel contention, RSSI update, etc. This
module lies in most simulators.

2) Network Simulation Module: It simulates the proto-
col behaviors, e.g., packet construction, transmission
state machine, etc. It lies in many network simulators,
e.g., Cooja with the network level mode, NS-3, and
OMNET++.

3) Instruction Simulation Module: It captures device-
dependent behaviors in the machine code level. It can
capture not only the protocols behaviors but also the
platform characteristics. It achieves high fidelity (e.g.,
Cooja [30]).

4) Discrete Event Management: It is responsible for man-
aging the event queue, e.g., inserting and popping the
events.

Fig. 7 shows that with the increase in the number of sim-
ulation nodes, the proportion of simulating the radio medium
increases in the four simulators. Note that the time proportion
of the radio medium is higher than 45% for TinySim, NS-3,

and OMNET++ even when simulating 100 devices, indicating
that this is a common module resulting in large execution over-
head. For Cooja with the instruction level simulation, although
the main overhead falls into the instruction simulation module,
the overhead of the radio medium also increases to 25% when
simulating 5000 devices.

To further understand why the radio medium module con-
sumes so much time, we carefully analyze the source codes
of existing three simulators, and find that there are many time
consuming operations on the radio-related data structure, e.g.,
channel condition detection in CSMA mechanism, and colli-
sion behavior simulation. To simulate the collision behavior
or the channel condition detection, the simulator needs to
wait for all devices that may interfere with each other to
execute to a certain time before they can determine whether
the transmission is conflicted or not. Before to do this, the
transmission behaviors were suspended and stored in a queue
(e.g., collisionQ in TinySim) as shown in Fig. 8. As the scale
of the simulation increases, the overhead of enumeration and
selection from the collisionQ becomes larger. Therefore, the
simulation of the radio medium takes more and more time.

Similarly, without the simulation approximation, TinySim
also suffers from high overhead in the radio medium mod-
ule. Fig. 8 presents typical functionalities to simulate the radio
medium, and existing simulators, such as Cooja, OMNET++,
and NS-3 have similar functions. To increase the scalability,
we propose a machine learning-based approach to reduce the
above time-consuming operations. Specifically, by learning the
transmission behavior of every transmission link (i.e., the pair
of the transmitter and the receiver), the number of transmis-
sions (including retransmissions) and the related statistics (e.g.,
the delay and the power consumption) for one transmission
can be directly obtained. As shown in Fig. 8, when a trans-
mission arrives, the approximation module can directly provide
the detailed statistics. Note that the approximation module can
also be utilized to estimate whether the channel is busy for the
CSMA mechanism.

B. Scalable Simulation

Machine Learning-Based Simulation Approximation:
However, to put this idea into a functional system faces
several challenges: 1) Which features should we extract?
2) Which algorithm should be chosen? and 3) How to tradeoff
the speed and the accuracy?

Feature Selection: The model is trained based on the trans-
mission link; therefore, the features should be related to the
link. For example, the PRR of this link, the number of nodes
that do not synchronize with the receiver (e.g., causing poten-
tial collisions), the number of nodes that synchronize with
the receiver, etc. The above features are selected as the most
important ones using the correlation-based feature selection
approach [41], which has been widely used in machine learn-
ing. It can evaluate the worth of a subset of features by
considering the individual predictive ability of each feature
along with the degree of redundancy between them.

The Combination of the Black Box and the White-Box
Estimation: One of the important features of TinySim is

Authorized licensed use limited to: Tencent. Downloaded on November 23,2023 at 12:33:19 UTC from IEEE Xplore. Restrictions apply.

20992 IEEE INTERNET OF THINGS JOURNAL, VOL. 10, NO. 23, 1 DECEMBER 2023

Fig. 8. Core procedures of simulating radio medium with and without the approximation approach.

that developers can obtain the application’s statistics (e.g.,
the delay and the power consumption) to further optimize
their algorithms. For example, the energy consumption of the
NB-IoT module in terms of different states, including the
transmission, the reception, the listen, and the sleep. Therefore,
the output of the machine learning algorithm should be the
statistics.

The existing work [42] also utilizes a machine learning-
based approach to speed up the simulation. However, they
can only produce two outputs that are very insufficient for
TinySim, e.g., at least eight outputs for the energy consump-
tion and the delay of the NB-IoT module. To deal with this
challenge, a straightforward approach is to train dedicated
models for different statistics separately. However, it will incur
large computation overhead and slow down the simulation
speed.

On the contrary, we propose an approach by combin-
ing a black-box method and a white-box method. With the
black-box method, we obtained high-level statistics, e.g., the
number of retransmissions K and the delay D (successfully
receiving packets or dropping packets). Then, based on the
high-level statistics, we derive a concrete model to estimate the
detailed statistics, e.g., the delay and the power consumption
of different states of the NB-IoT module.

For the black-box method, we choose long LSTMs [16]
since it can produce two outputs: 1) the cell state C and
2) the memory h. The two outputs are mapped to the number
of retransmissions K and the delay D (successfully receiving
packets or dropping packets), respectively. However, the values
of these two outputs range from −1 to 1. We need to normal-
ize the number of retransmissions and the delay to the range
of −1 to 1 when training the model. Specifically, given the
maximum number of retransmissions Kmax, and the maximum
delay Dmax for waiting replies from the sender, the normalized
retransmissions Knor and delays Dnor are derived as

Knor = −1 + 2 ∗ (K + 1)

Kmax

Dnor = −1 + 2 ∗ (D + 1)

Dmax
. (1)

LSTMs is a special kind of recurrent neural network (RNN),
which is composed of a series of neural nodes that take input
features, and perform a series of matrix multiplications on
them based on each node’s activation function.

Algorithm 1: Derive Detailed Timing Statistics of
Hardware States at the Sender Side (White-Box Approach)

Input : Whole delay D, transmission number K, data packet
length L, ack packet length A, nack packet legnth N,
ack time out AT, nack time out NT

Output: Time for transmission ttx, time for reception trx, time
for listening tlisten, time for idle tidle

1 ttx = packet_on_air(L)*K;
2 if Retransmission mechanism is ACK-based then
3 trx = packet_on_air(A);
4 tlisten = (K-1)*AT;

5 else if Retransmission mechanism is NACK-based then
6 trx = packet_on_air(N)*(K-1);
7 tlisten = NT;

8 else if No retransmission mechanism then
9 /*trx and tlisten are zero since there are no reliability

guarantee.*/

10 tidle = D - trx - ttx - tlisten;

For the white-box method, we split the existing transmis-
sion mechanism as three types: 1) the ACK-based (NB-IoT
HARQ); 2) the NACK-based (reliable multicast transmission);
and 3) no retransmissions (LoRa unconfirmed). Algorithm 1
shows how to estimate the four important timing statistics
at the sender side. The first two inputs (Whole delay D,
transmission number K) are estimated by the black box,
while other inputs can be obtained from the settings in the
communication module. For the ACK-based retransmission
mechanism, we assume that the sender performs retransmis-
sions when the ACK waiting time (AT) is passed. Therefore,
the time for the listening state is (K − 1)*AT. The only
time for the receiving state is receiving the ACK packet,
i.e., the packet on air time of the ACK packet (as shown in
lines 2–4 in Algorithm 1). As for the NACK-based retrans-
mission mechanism, the sender only performs retransmissions
when receives a NACK packet. The time for receiving state,
including receiving all NACK packets (as shown in lines 5–7
in Algorithm 1). For the no retransmission scenario, the
sender only transmits the data packet and then switch other
states.

For the timing statistics of the receiver, the trrx and trtx are the
corresponding timing of ttx and trx of the sender. The rest of
the time are regarded as the listening state trlisten = D−trrx−trtx.

Authorized licensed use limited to: Tencent. Downloaded on November 23,2023 at 12:33:19 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: SCALABLE AND INTERACTIVE SIMULATION FOR IoT APPLICATIONS WITH TinySim 20993

Fig. 9. Example of performing beyond source-line level instrumentation on
a blink application of Arduino UNO.

To get the energy consumption, we only need to multiply
the estimated elapsed time of each state with the current
accordingly.

Tradeoff Between the Speed and the Accuracy: Reducing
transmission and collision-determination events of all nodes
using machine learning can significantly speed up the simu-
lation, however, resulting in the degradation of the simulation
accuracy. Instead of fixing the fraction of nodes optimized
with machine learning, TinySim gives developers the ability to
adjust the simulation speed on demand. Developers can deter-
mine the fraction of nodes using the approximation with the
provided parameter. TinySim will finally output the estimated
accuracy based on the given parameter.

Discussion of the Approximation-Based Approach: The
above approach has the following benefits. First, it can not
only greatly reduce the simulation overhead but also provide
detailed statistics for developers to optimize their IoT appli-
cations. Second, the approximation fraction can be adjusted
such that developers can control the simulation speed and
the fidelity on demand. It is flexible for the developers.
Third, through the detailed analysis of the common time-
consuming modules of the existing simulators, the approxima-
tion approach may be used as a stand-alone module to improve
the scalability of the existing discrete event-based simulators.

Distributed Simulation: The speed of TinySim can be fur-
ther improved through the distributed simulation. As stated in
many previous works [8], [29], [43], when executing discrete
events in distributed hosts, the major overhead affecting scal-
ability comes from the interactions among hosts, e.g., packet
transmissions between nodes running on different hosts. To
minimize synchronization overhead among hosts while bal-
ancing the load (e.g., the number of discrete events) over all
hosts, we utilize a parallel graph partition tool Zoltan [44] to
solve the task distribution problem. It uses multilevel heuristic
approaches to achieve effective graph repartition [44].

Discussion of the Distributed Simulation: With the dis-
tributed simulation, TinySim can further improve the simu-
lation speed, resulting in a higher scalability. We leave the
distributed simulation as an optional choice for the develop-
ers that have more computation resources. In this way, the
architecture of TinySim is more flexible.

VIII. IMPLEMENTATION

TinySim utilizes TinyLink as the IoT application implemen-
tation language. TinyLink language is a hardware-independent
programming language that enables the rapid development of

IoT applications. By adopting a top-down developing process,
TinyLink abstracts the IoT hardware in a way such that devel-
opers can focus on the application logic without experiences
in embedded systems. By analyzing the application logic and
requirements from developers’ code, TinyLink language com-
piler can automatically select the most appropriate hardware
components as well as their connections. In TinyLink lan-
guage, hardware components can be divided into mainboards
and peripherals (e.g., sensors and communication modules).

For the IoT devices, we carefully split into the multiple
modules, e.g., the mainboard, sensor and display, and commu-
nication module. These modules play import role in simulating
the fine-grained timing behaviors of the IoT devices. In the
following, we provide details about how these modules are
implemented.

A. Implementation of Simulation Modules

1) Mainboard Simulation:
1) Capturing the Timing Behaviors: Mainboard consists of

key electronic components of a system, e.g., MCU and
memory. The main behavior of the mainboard is execut-
ing the IoT application by the MCU. Therefore, TinySim
simulates the mainboard by capturing the MCU behav-
iors. To this end, we decompile the application using
the corresponding cross compiler to obtain a clear map-
ping from the source codes to the MCU instructions
at the source-line level. The elapsed time of applica-
tions is calculated based on the mapping between MCU
instructions and execution time documented in datasheet.
To capture the timing behavior beyond the source line
level (e.g., the conditional operations), we propose to
separate the conditional operations before performing
instrumentations. For example, as shown in Fig. 9, the
single line OR (or AND) operation is separated into two
conditional operations. Then, by performing instrumen-
tation on the transformed code (e.g., Transform_a.c), the
MCU behaviors of both “test2 < 10” and “test1 > 4” are
captured.

2) Capturing the Power Consumption: To capture the
power consumption of mainboard, it is essential to track
the amount of time the MCU spends in each power
state (e.g., active and sleep). The sleep state of MCU
can be inferred from certain functions which are usu-
ally a mixed-code of assembly and source code. For
example, __asm(“WFI”) denotes that Cortex-M3 enters
into the sleep mode and waits for interruptions [45].
Any interruptions can wake up the MCU and change
the state of MCU back to the active mode, e.g., the
clock interruption. Then, the MCU state can be tracked
by instrumenting the power monitor code at the power
state transition functions. When the MCU power states
are tracked, the power consumption can be calculated by
multiplying the previously captured timing behaviors of
MCU instructions and the current of each state referred
from the datasheet.

2) Sensor and Display Module Simulation: TinySim sim-
ulates the sensors by measuring the elapsed time and the

Authorized licensed use limited to: Tencent. Downloaded on November 23,2023 at 12:33:19 UTC from IEEE Xplore. Restrictions apply.

20994 IEEE INTERNET OF THINGS JOURNAL, VOL. 10, NO. 23, 1 DECEMBER 2023

consumed power of the provided APIs (e.g., read the temper-
ature of soil by the Soil Moisture sensor). Most peripherals
cannot be measured directly due to its limited interface, we
measure the elapsed time and the power consumption by con-
necting them into the mainboard and the results are obtained
by subtracting the mainboard measurements.

3) Communication Module Simulation: Among the vari-
ous communication protocols, we select to model one of the
LPWAN protocols, NB-IoT, as an example because of its
wide application scenarios and large-scale deployments. The
timing behaviors of NB-IoT falls into two protocol layers:
1) PHY-layer and 2) MAC layer.

1) Capturing the PHY-Layer Timing Behaviors: TinySim
simulates the communication behaviors at the bit level.
After channel encoding (e.g., Turbo coding for uplink
transmission and Tail Bitting Convolutional Coding
for downlink transmission [4]) and rate matching, the
NB-IoT frame is repeated to enhance the transmission
range of NB-IoT. Then, the bits of the repeated frames
are transmitted to the receiver with the error probability
p. p is related to the channel quality and the distance
which can be characterized by a path loss model [46].
To simulate the collision scenario, TinySim invokes a
collision event to determine whether these transmitted
bits will be collided with other transmissions.

2) Capturing the MAC-Layer Timing Behaviors: The MAC
layer behaviors include the back off timing and the
packet on-air time. The backoff timing strictly follows
3GPP definition, e.g., when there is no response to
the preamble, then devices will backoff a random time
within [0, 960] ms [47]. The packet on-air time is related
to the payload size, the allocated subcarriers and MCS.
Then, based on the above three parameters, devices or
the base station will pick a proper transport block size
(TBS) from the TBS Table [48]. For example, given the
TBS is 2536 bits, and the required resource unit (RU) is
seven according to the TBS table. Suppose most subcar-
riers are allocated (e.g., 1 ms/RU), therefore, the packet
on-air time is 7 ms.

3) Capturing the Power Consumption: To capture the
power consumption of NB-IoT, we instrument at the key
state transition functions, such as the send() and sleep().

For the communication modules that the source codes are
not public yet (e.g., NB-IoT [4]), we propose a generic devel-
opment framework that can help developers easily extend the
new communication module into TinySim. The framework
contains a series of basic radio states libraries, e.g., send(),
recv(), and sleep(). Developers who are familiar with the pro-
tocols only need construct the state transition graph by writing
simple SMC [17] codes. SMC is a state machine compiler
for automatically generating state patterns based on a state
machine description into a target object-oriented language.

B. Programming Style

Currently, TinySim intends to provide an easy-to-use
setup() and loop programming style for a wide variety
of IoT platforms. It is easy to transplant the code to Arduino

platforms since their programming styles are quite similar.
We implement all the APIs of the Tiny language for the
TinySim simulator and the Arduino IDE by using their own
native APIs, respectively. Similarly, we do the same things for
Raspberry Pi and BeagleBone platforms that run the Linux
system. The difference is that we build a preprocessor for
transforming the TinySim code into C/C++ code by injecting
proper header files and announcements, rearranging setup
and loop into the main function, etc. In the future, we
will support event-driven programming like TinyOS [2] and
Contiki [3] by utilizing the process-based execution methods
like TOSThread [49] where we implement the setup and
loop.

C. Hardware Heterogeneity

Supporting various IoT platforms is quite challenging due
to the great heterogeneity in processor, memory, and flash.

Since the IoT platforms possess various CPU/MCU/SoC,
TinySim’s compilers maintain a capability table that records
the CPUs’ capabilities like hardware timer, interrupt, power
save mode, etc. TinySim will give developers a warning if the
target IoT platform does not support capabilities written in
the code during compilation. Then, TinySim tries to facilitate
compilation by using additional libraries, e.g., using TinySim’s
software timer library for platforms like Raspberry Pi and
BeagleBone that do not contain hardware timers. Otherwise,
TinySim will throw an exception and terminate the compila-
tion process. Moreover, TinySim maintains a mapping table
that eliminates type differences, e.g., transforming a 4-bytes
int to long on Arduino and int on Raspberry Pi. It also
warns developers when detecting direct bitwise operations
since some processors (e.g., Arduino UNO and Intel x86)
use little-endian, and others (e.g., Raspberry Pi, AVR32) use
big-endian, which may cause different results.

Besides CPU/MCU, memory and flash also raise several
issues for TinySim. The size of memory space varies drasti-
cally on different IoT platforms, e.g., 2-KB RAM on Arduino
UNO and 1-GB RAM on Raspberry Pi 2. Besides warning
and avoiding uploading programs that have oversized memory
space, TinySim adopts several techniques to optimize the
memory usage for memory-constrained platforms, e.g., using
built-in function F() on Arduino platforms that can avoid
loading strings to memory space for the presence of lots of
debugging logs. Similarly, TinySim also adopts techniques to
save flash space for flash-constrained platforms, e.g., storing
strings and block data to EEPROM on Arduino platforms,
removing unused libraries and functions, etc.

To let TinySim run on x86 platforms, we have reimple-
mented hardware related APIs of Tiny language with sim-
ulated hardware modules. For example, the API TL_Soil
_Moisture.read() is reimplemented with a simulated
sensor module that can periodically generate moisture data
from a real-world trace. We classify the hardware modules
into three categories (i.e., mainboard, sensor and display
module, and communication module) and provide details of
how these hardware can be simulated to be executed at x86
platforms.

Authorized licensed use limited to: Tencent. Downloaded on November 23,2023 at 12:33:19 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: SCALABLE AND INTERACTIVE SIMULATION FOR IoT APPLICATIONS WITH TinySim 20995

Fig. 10. Monitoring power consumption using HVPM.

IX. EVALUATION

A. Experiment Setup

Hardware: We use two real IoT applications to evaluate the
fidelity of TinySim. One is the smart flowerspot application.
To evaluate the downlink of NB-IoT module [50], we add a
MQTT message handler to respond to the sensed data. The
assembled smart flowerspot device is shown in Fig. 10. We
replace the ESP8266 ESP01 WiFi module [51] in [52] with
the BC95 NB-IoT module [50]. Another application is the
voice controlled LED lamp which is the same with [52].
To accurately measure the power consumption, we use high-
voltage power monitor (HVPM) of Monsoon3).

HVPM supports the main channel output voltage range of
0.8–13.5 V and up to 6A continuous current. Fig. 10 presents
how HVPM can measure the power consumption of the smart
flowerspot device. The voice control application and other sin-
gle hardware components can be measured similarly. To run
TinySim, the master machine is a PC with 3.2-GHz CPU, eight
processors, 12G RAM. There are at most eight slave machines
with 2.5 GHz, four processors, 8G RAM each.

Macro Benchmark: We give a set of actions for the two
IoT applications (i.e., the smart flowerspot and the voice
controlled LED). For example, uploading and requiring soil
data for the smart flowerspot using NB-IoT; performing voice
control to the LED lamp. The macro benchmarks are: overall
power consumption and delay in given actions.

Micro Benchmark: The micro benchmarks are different in
terms of the hardware component (e.g., mainboard, radio hard-
ware, sensor, and controller). 1) For the mainboards, we
validate the MCU idle and MCU active in terms of the power
consumption and the elapsed time. We run the delay function
and power save function for 10 s to present the active and
idle states of MCU. Three popular mainboards are evaluated,
i.e., Arduino UNO (UNO for short), Raspberry Pi 2 (RP2 for
short), and BeagleBone Black (BBB for short). 2) For the sen-
sors and displayers we validate all of the provided API from
them with regard to the power consumption and the elapsed
time. Due to the space limit we only present the six frequently
used micro benchmarks according to [52]. Because most sen-
sors and controllers do not provide enough interfaces for power
consumption measurement, we thus plug them with the main-
board and the final measurement results are subtracted with the
overhead from the mainboard. 3) For the communication mod-
ules, we validate three important states, (e.g., send, receive,

3“HVPM,” https://www.msoon.com.

TABLE II
MACRO BENCHMARK PERFORMANCE

TABLE III
MICRO BENCHMARK PERFORMANCE OF MAINBOARD

and sleep) for BC95 NB-IoT module [50] and Dragino LoRa
Shield [53].

Case Study: We use two case studies to illustrate the attrac-
tive features of TinySim, e.g., interactive programming and
expanding to the online learning platform. The details are
shown in Section IX-G.

In the remainder of the section, we will evaluate the
performance of TinySim in terms of the three key requirements
stated in the beginning of this article, that is, high fidelity,
(Section IX-B) high scalability (Sections IX-C and IX-D)
and high interactivity (Sections IX-E and IX-F).

B. Fidelity: Simulated Hardware

Table II shows the overall accuracy of profiling power con-
sumption and the action delay with regard to the specific
actions in two real IoT applications. The experiment of each
action is repeated ten times and the results are averaged.
Results show that TinySim can accurately simulate the power
consumption and the action delay with low average error rate
(e.g., 3.8% for the power consumption and 3.95% for the
action delay). The delay simulation error mainly stems from
the path loss simulation. In reality, the communication condi-
tions are complicated especially in long-range transmissions.
For example, the unpredictable obstacles and the people in the
movement. However, TinySim can still achieve relatively high
accuracy in a certain scenario, e.g., at the mid-night, therefore,
this error is acceptable with lower than 4.8%.

In addition to the overall accuracy, we also evaluate the
accuracy of simulating three mainboards, (Arduino UNO,
Raspberry Pi 2, and BeagleBone Black), six frequently used
peripherals (Grove light, humidity sensor, temperature sensor,
microphone, LED Lamp, and display screen) and two commu-
nication protocols (NB-IoT and LoRaWAN). The simulation
errors are at most 9.52% and the detailed results are eliminated
due to space limits.

Tables III and IV show the micro-benchmark results of eval-
uating hardware components. For all of the three mainboards,
TinySim achieves 100% time estimation accuracy, because the

Authorized licensed use limited to: Tencent. Downloaded on November 23,2023 at 12:33:19 UTC from IEEE Xplore. Restrictions apply.

20996 IEEE INTERNET OF THINGS JOURNAL, VOL. 10, NO. 23, 1 DECEMBER 2023

TABLE IV
MICRO BENCHMARK PERFORMANCE OF PERIPHERAL

(a) (b)

Fig. 11. Simulation speed and accuracy comparisons with existing simulator
(Ten simulation minutes). (a) Simulation speed. (b) Simulation accuracy.

programs used for micro-benchmarks are relatively simple and
almost all of the instructions can be mapped accurately. The
power consumption simulation error is as lower as 1% or less.
The subtle errors may due to the current jitters of mainboards.

For all of the evaluated peripherals, TinySim achieves the
simulation error as small as 1.655% and 2.78% on average in
terms of profiling power and time, respectively. For the five
states of the BC95 NB-IoT module, TinySim achieves low
simulation error at 2.6% and 2.54% on average for profiling
power and time. The power and time simulation error steams
from the MCU behaviors, which TinySim cannot directly cap-
ture, on BC95 board. The error is relatively low especially for
the states of listen, sleep, and idle (e.g., lower than 1.08%).
For the state send and receive, the simulation error raises a lit-
tle (e.g., about 6.09% on average) due to the unstable wireless
transmission.

C. Scalability: Comparison With Existing Simulator

We compare TinySim with the most related simulator ns-3
that is with the NB-IoT module [54]. We disable the inter-
actions from Unity 3-D. We simulate the smart flowerpot
application that samples the humidity periodically to trigger
the water pouring operation. The sensor data is sent to the
cloud via the NB-IoT radio.

We evaluate the impact of the number of simulated nodes
on the speed and the accuracy. Fig. 11 show that TinySim
can not only achieve slightly better simulation accuracy than
ns-3 (e.g., 2.3% smaller relative error on average) because of
the detailed simulation of the hardware and the communica-
tion behaviors, but also a faster simulation speed (about 3×

(a) (b)

Fig. 12. Impact of the fraction of the approximation simulation (Ten simu-
lation minutes, 4000 nodes). (a) Simulation speed. (b) Simulation accuracy.

Fig. 13. Impact of the interaction frequency of Unity 3-D on the simulation
speed (Ten simulation minutes, 4000 nodes).

speed improvements when simulating 4000 nodes) with the
simulation approximation and enabled distributed simulation.

D. Scalability: The Approximation-Based Simulation

TinySim provides a parameter to adjust the fraction of using
approximation-based approach to speed up the simulation. We
let TinySim simulates a shared bike application for 10 min
and repeat the experiments 30 times. We simulate 4000 nodes
and utilize eight machines to perform distributed simulations.
We replace different machine learning algorithms in TinySim
to compare the approximation performance, e.g., LSTM [16]
(TinySim-LSTM), train separate models for different metrics
(TinySim-Sepa).

Fig. 12 presents the impact of changing the approximated
fraction from 0 to 1 on the simulation speed and the simu-
lation accuracy. Results show that TinySim-Sepa achieves the
highest simulation accuracy since it trains dedicated models
separately for different metrics (the relative error is smaller
than 5%), however, its simulation speed is far too slow
than TinySim-LSTM, specifically 47.6% slower. Note that
the relative error of TinySim-LSTM is only 1.8% lower than
TinySim-Sepa, indicating the effectiveness of combining the
black-box (LSTM) and the white-box approach.

E. Interactivity: Impact of Interactions From Unity 3-D

Unity 3-D can provide user-friendly development experi-
ence, however, it may result in the degradation of simulation
speed due to the roll back of TinySim. We simulate a shared
bike application to evaluate the impact of developer interaction
frequency (the number of interactions per minute) and event
types on the simulation speed. In this application, each shared
bike is equipped with a smart lock, a GPS, an NB-IoT mod-
ule for receiving unlocking events and a solar cell. The smart

Authorized licensed use limited to: Tencent. Downloaded on November 23,2023 at 12:33:19 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: SCALABLE AND INTERACTIVE SIMULATION FOR IoT APPLICATIONS WITH TinySim 20997

(a) (b)

Fig. 14. Benefits of using the dependency graph to optimize the roll back
overhead (Ten simulation minutes, 4000 nodes), two types of events are both
60 events/min. (a) Open one bike. (b) Open 500 bikes.

(a) (b)

Fig. 15. Case studies. (a) Case 1: A smart home application on local TinySim.
developers can interactively debug IoT applications, (b) Case 2: A shared
bike application on online TinySim. TinySim is integrated with a online IDE.
(a) Case 1: Local simulator. (b) Case 2: Online simulator.

lock will be unlocked only when receiving a message through
the NB-IoT module. The GPS module will periodically upload
location information to the cloud, and its data only changes
when the smart lock is opened for users to ride. The solar
cell only performs charging when the weather is sunny. We
simulate three interaction events supported by Unity3-D and
TinySim: 1) open the smart lock of one bike, and it will change
the data of the GPS module; 2) generate 500 smart lock open-
ing messages, and it will trigger the NB-IoT module to receive
messages from the cloud, and the GPS data will be changed
too; and 3) change the weather to the cloudy, and it only
impacts the behaviors of the solar cell of all shared bikes.

Fig. 13 shows the impact of developer interaction frequency
(the number of interactions per minute) and event types on
the simulation speed. Results show that for the interactions
of opening one lock and changing the weather, the simula-
tion speed is slightly decreased (i.e., 17.2% on average) when
the interaction frequency changes within 20 and 60 msg/min.
Since both two interactions only effect few events to be rolled
back. Note that this range is the common case when develop-
ers debug. It reveals that the partial roll back strategy based
on the dependency graph is effective. On the other hand, when
opening more shared bikes, i.e., 500 smart locks, the simula-
tion speed will be lowered down more since the amount of
events that can be optimized is reduced.

F. Interactivity: Roll Back Overhead Optimization

Fig. 14 presents the effectiveness of using dependence
graph-based roll back optimization. Results show that
for both interaction types, the roll back optimization can
improve the simulation speed significantly by 38.4% on
average, comparing with the approach of rolling back all
events. Specifically, for the interaction of opening one

bike, the optimization approach has the best improvements
(45.2%), since with the dependency graph only a few events
should be re-executed. The roll back is therefore reduced
significantly.

G. Case Study

Case 1 (Interactive Programming and Debugging):
Fig. 15(a) presents how to interactively program and debug
a typical smart home application with TinySim. Developers
can run TinySim locally and upload the application code to
the corresponding IoT devices, e.g., curtain and fan. There are
several attractive features help developers to pre-examine the
behaviors of IoT applications before real deployments.

Actively Change the Simulation Environment: Developers
can actively inject events to change the environment to ver-
ify the functionality of IoT applications. This is achieved by
accepting interactions from the Unity 3-D modules, and then,
the events generated from Unity 3-D are delivered to the
TinySim. Fig. 15(a) shows the example that developers can
lower down the illumination intensity to verify whether the
smart lamp can detect the change of illumination and turn on
the light.

Inject a Randomly Walking Human: Developers can also
create a human in the scenario to randomly trigger events. The
trajectory of the human can be generated from TinySim, and
is delivered to the Unity 3-D engine. The triggered events can
then be predicted and the simulation efficiency is improved.
Fig. 15(a) presents that a human is put in the indoor room.
Developers can examine that whether the smart door will
detect the human’s approaching and open the door.

Change the Simulation Speed to Examine the Complete
Cycle: Another attractive feature of TinySim is that developers
do not need to run the simulator in a fixed speed. On the con-
trary, they can speed up TinySim when current events are not
interested, and slow down TinySim when they need to focus
on the behaviors of specific devices at the certain time. The
speed is controlled by changing the number of threads in the
thread-pool. Fig. 15(a) shows that TinySim supports multiple
speed options.

Watch Variable Values: When developers find abnormal
behaviors of IoT application, stopping the simulator and
watching variable values will be a very useful function to
help developers quickly lock the bugs. TinySim runs on
x86 machine and variable values are captured through the
gdb tool. Fig. 15(a) presents that the smart curtain behaves
abnormally since it is not opened when the simulation time is
at 10:00 A.M. TinySim is stopped and outputs the IP address
of the smart curtain and destination IP address of the smart
clock. Developers can find that the smart clock did not trans-
mit the time value successfully to the smart curtain. The bug
is that the destination IP address (should be the smart curtain)
is set wrongly in the smart clock.

Case 2 (Expand TinySim to the Online Programming
System): TinySim can also be connected to a remote pro-
gramming system. With this property, developers can easily
create IoT applications and and verify them without setting
up a local development environment. Fig. 15(b) shows that
TinySim is integrated into a remote programming system,

Authorized licensed use limited to: Tencent. Downloaded on November 23,2023 at 12:33:19 UTC from IEEE Xplore. Restrictions apply.

20998 IEEE INTERNET OF THINGS JOURNAL, VOL. 10, NO. 23, 1 DECEMBER 2023

e.g., LinkLab [55]. Developers are programming and verifying
the shared bike application. Application codes are directly
written and uploaded into the simulated bike in the online
IDE. Developers can speed up the simulation time to quickly
examine how different hours of a day change the bike usage
pattern. Developers can also verify that whether the shared
bike will send alert signals when it goes to a wrong area, e.g.,
dropped into a lake. Changing the communication modules in
the shared bike to compare which is with the smaller reaction
delay, i.e., the delay of unlocking the shared bike, or which is
with the longer lifetime.

X. CONCLUSION AND FUTURE WORK

In this article, we presented TinySim, an IoT simulator
for providing entire support to IoT applications. TinySim
satisfies the requirements of completeness, high fidelity,
high scalability, and high interactivity. TinySim can simu-
late representative IoT applications, such as smart flowerpot
and shared bicycles. We conducted extensive experiments
to evaluate the performance of TinySim. Results show
that TinySim achieves high simulation accuracy with
lower than 9.52% error. TinySim improves the simu-
lation speed around 3× comparing to the state-of-art
approach. Nevertheless,further improvement is possible in two
areas.

Gaps in Simulating the Delay Between the Base Station
and the Cloud: Currently, to simulate the communication links
between the base station and the cloud, TinySim utilizes the
Internet connection between the PC and the cloud through
the wired connection. Without the knowledge of the routing
path and the topology of the core network, it is relatively
complicated to accurately model the delay between the base
station and the cloud [35]. It is nontrivial to accurately sim-
ulate the delay, especially when there are a large number of
requests for accessing the devices (e.g., opening the shared
bike at peak time). In fact, TinySim can still achieve rela-
tively high simulation accuracy under specific scenarios (e.g.,
the traffic delay maybe predictable when transmission hap-
pens at mid-night). To provide accurate simulation in more
scenarios, a promising approach is to open more parame-
ters to the developer to determine the routing metrics and
the network topology. In this way, most routing behaviors in
the core networks can be simulated and the accuracy is thus
improved.

Enabling Direct Control From Users to the Simulated
Device: TinySim now supports the indirect control to the sim-
ulated devices, i.e., through the cloud. We choose this indirect
design because of two reasons. First, it is an easy installa-
tion that connecting the IoT devices to the cloud. Second,
TinySim provides the simulation of LPWAN which typically
includes a cloud to forward the message from the users. And,
most smartphones currently do not support direct access to
LPWAN. However, it may incur large communication over-
head when the network condition is bad. Therefore, as one
of the possible future works, we would like to incorpo-
rate in more short-range communication technologies. With
most short-range communication technologies are already

available in smartphones, it is possible to control devices by
accessing AP (e.g., WiFi) or directly accessing the device
(e.g., BLE).

In summary, the future work includes two directions. First,
extending TinySim with more communication protocols, e.g.,
WiFi. Providing simulations of the short range communica-
tion protocols can better express the IoT application behavior
at the smart home. e.g., how are WiFi and Bluetooth inter-
acted over the unlicensed band. Second, extending TinySim
with core network simulation. In the current version, TinySim
only provides the behavior simulation at the radio access
network (RAN) of NB-IoT. The behaviors of the core part
of NB-IoT are more complex and may also have impacts
on the performance of NB-IoT client, e.g., how the NB-IoT
clients adapt the modulation parameters and how the base
station allocates resources for the clients. Providing more
details about the above behaviors can improve the simulation
fidelity.

REFERENCES

[1] “Newsroom: Gartner says 8.4 billion connected things will be used.”
Gartner. 2017. [Online]. Available: https://www.gartner.com/newsroom/
id/3598917

[2] P. Levis et al., “TinyOS: An operating system for sensor networks,” in
Ambient Intelligence. Heidelberg, Germany: Springer, 2005,
pp. 115–148.

[3] A. Dunkels, B. Gronvall, and T. Voigt, “Contiki—A lightweight and
flexible operating system for tiny networked sensors,” in Proc. IEEE
Local Comput. Netw., 2004, pp. 455–462.

[4] “Narrowband IoT (NB-IoT),” 3GPP, Sophia Antipolis, France, document
TSG69 RP151621, 2015. [Online]. Available: http://www.3gpp.org/ftp/
tsg_ran/TSG_RAN/TSGR_69/Docs/RP-151621.zip

[5] “A low power, wide area (LPWA) networking protocol
LoRaWAN,” LoRa Alliance, San Ramon, CA, USA, White Paper,
2017. [Online]. Available: https://www.lora-alliance.org/

[6] B. L. Titzer, D. K. Lee, and J. Palsberg, “Avrora: Scalable sensor
network simulation with precise timing,” in Proc. IEEE/ACM IPSN,
2005, pp. 477–482.

[7] L. Girod, N. Ramanathan, J. Elson, T. Stathopoulos, M. Lukac, and
D. Estrin, “EmStar: A software environment for developing and deploy-
ing heterogeneous sensor-actuator networks,” ACM Trans. Sens. Netw.,
vol. 3, no. 3, p. 35, 2007.

[8] Z.-Y. Jin and R. Gupta, “Improving the speed and scalability of dis-
tributed simulations of sensor networks,” in Proc. IEEE/ACM IPSN,
2009, pp. 169–180.

[9] N. Bak, B.-M. Chang, and K. Choi, “Smart block: A visual program-
ming environment for SmartThings,” in Proc. IEEE 42nd Annu. Comput.
Softw. Appl. Conf. (COMPSAC), 2018, pp. 32–37.

[10] V. Damjanovic-Behrendt and W. Behrendt, “An open source approach
to the design and implementation of digital twins for smart manufac-
turing,” Int. J. Comput. Integr. Manuf., vol. 32, nos. 4–5, pp. 366–384,
2019.

[11] J. P. Dias, F. Couto, A. C. R. Paiva, and H. S. Ferreira, “A brief overview
of existing tools for testing the Internet-of-Things,” in Proc. IEEE Int.
Conf. Softw. Test., Verification Validation Workshops (ICSTW), 2018,
pp. 104–109.

[12] Q. Chen, F. Schmidt-Eisenlohr, D. Jiang, M. Torrent-Moreno,
L. Delgrossi, and H. Hartenstein, “Overhaul of IEEE 802.11 modeling
and simulation in ns-2,” in Proc. 10th ACM Symp. Model., Anal.,
Simulat. Wireless Mobile Syst., 2007, pp. 159–168.

[13] T. R. Henderson, M. Lacage, G. F. Riley, C. Dowell, and
J. Kopena, “Network simulations with the ns-3 simulator,” SIGCOMM
Demonstration, vol. 14, no. 14, p. 527, 2008.

[14] A. K. Rathi and A. J. Santiago, “The new NETSIM simulation
program,” Traffic Eng. Control, vol. 31, no. 5, pp. 317–320, 1990.

[15] A. Varga, “OMNeT++,” in Modeling and Tools for Network Simulation.
Heidelberg, Germany: Springer, 2010, pp. 35–59.

[16] H. Sepp and S. Jürgen, “Long short-term memory,” Neural Comput.,
vol. 9, no. 8, pp. 1735–1780, 1997.

Authorized licensed use limited to: Tencent. Downloaded on November 23,2023 at 12:33:19 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: SCALABLE AND INTERACTIVE SIMULATION FOR IoT APPLICATIONS WITH TinySim 20999

[17] D. Buehler, S. Whitaker, and J. Canaris, “Sequence invariant state
machine compiler,” in Proc. IEEE 1st Great Lakes Symp. VLSI, 1991,
pp. 318–323.

[18] S. L. Kim, H. J. Suk, J. H. Kang, J. M. Jung, T. H. Laine, and J. Westlin,
“Using unity 3D to facilitate mobile augmented reality game develop-
ment,” in Proc. IEEE World Forum Internet Things (WF-IoT), 2014,
pp. 21–26.

[19] “TinySim source code.” 2019. [Online]. Available: https://github.com/
TinySim/TinySim

[20] N. D. Patel, B. M. Mehtre, and R. Wankar, “Simulators, emulators,
and test-beds for Internet of Things: A comparison,” in Proc. 3rd
Int. Conf. I-SMAC (IoT Social, Mobile, Anal. Cloud) (I-SMAC), 2019,
pp. 139–145.

[21] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and
M. Ayyash, “Internet of Things: A survey on enabling technologies,
protocols, and applications,” IEEE Commun. Surveys Tuts., vol. 17,
no. 4, pp. 2347–2376, 4th Quart., 2015.

[22] X. Zeng, S. K. Garg, P. Strazdins, P. P. Jayaraman, D. Georgakopoulos,
and R. Ranjan, “IOTSim: A simulator for analysing IoT applications,” J.
Syst. Archit., vol. 72, pp. 93–107, Jan. 2017.

[23] S. Claudio and F. Giancarlo, “A simulation-driven methodology for IoT
data mining based on edge computing,” ACM Trans. Internet Technol.,
vol. 21, no. 2, pp. 1–22, 2021.

[24] V. Barbuto, C. Savaglio, M. Chen, and G. Fortino, “Disclosing edge
intelligence: A systematic meta-survey,” Big Data Cogn. Comput., vol. 7,
no. 1, p. 44, 2023.

[25] P. Levis, N. Lee, M. Welsh, and D. Culler, “ToSSIM: Accurate and
scaleable simulation of entire TinyOS applications,” in Proc. ACM
Sensys, 2003, pp. 126–137.

[26] V. Shnayder, M. Hempstead, B. R. Chen, G. W. Allen, and M. Welsh,
“Simulating the power consumption of large-scale sensor network
applications,” in Proc. ACM Sensys, 2004, pp. 188–200.

[27] O. Landsiedel, H. Alizai, and K. Wehrle, “When timing matters:
Enabling time accurate and scalable simulation of sensor network
applications,” in Proc. IEEE/ACM IPSN, 2008, pp. 344–355.

[28] M. H. Alizai, Q. Raza, Y. Chandio, A. A. Syed, and T. M. Jadoon,
“Simulating intermittently powered embedded networks,” in Proc. ACM
EWSN, 2016, pp. 35–40.

[29] H. Jiang, J. Zhai, S. K. Wahba, B. Mazumder, and J. Hallstrom, “Fast
distributed simulation of sensor networks using optimistic synchroniza-
tion,” IEEE Trans. Parallel Distrib. Syst., vol. 25, no. 11, pp. 2888–2898,
Nov. 2014.

[30] F. Osterlind, A. Dunkels, J. Eriksson, N. Finne, and T. Voigt, “Cross-
level sensor network simulation with COOJA,” in Proc. IEEE Local
Comput. Netw., 2006, pp. 641–648.

[31] M. C. Bor, U. Roedig, T. Voigt, and J. M. Alonso, “Do LoRa low-
power wide-area networks scale?” in Proc. ACM Int. Conf. Model., Anal.
Simulat. Wireless Mobile Syst., 2016, pp. 59–67.

[32] “Ali Yun cloud.” 2023. [Online]. Available: http://www.aliyun.com
[33] “IBM Watson.” 2023. [Online]. Available: https://www.ibm.com/watson/
[34] (LoRa Alliance, San Ramon, CA, USA). “Open source of a low power,

wide area (LPWA) networking protocol LoRaWAN.” 2017. [Online].
Available: https://github.com/Lora-net

[35] B. Nguyen et al., “Towards understanding TCP performance on
LTE/EPC mobile networks,” in Proc. 4th Workshop Things Cellular
Oper., Appl. Challenges, 2014, pp. 41–46.

[36] C. Bormann, A. P. Castellani, and Z. Shelby, “CoAP: An application
protocol for billions of tiny Internet nodes,” IEEE Internet Comput.,
vol. 16, no. 2, pp. 62–67, Mar./Apr. 2012.

[37] I. Hinojosa-Baliño, O. Infante-Vázquez, and M. Vallejo, “Distribution
of PM2.5 air pollution in Mexico city: Spatial analysis with land-use
regression model,” Appl. Sci., vol. 9, no. 14, p. 2936, 2019.

[38] L. HyungJune, C. Alberto, and P. Levis, “Improving wireless simulation
through noise modeling,” in Proc. IPSN, 2007, pp. 1–10.

[39] D. Engler and K. Ashcraft, “RacerX: Effective, static detection of race
conditions and deadlocks,” ACM SIGOPS Oper. Syst., vol. 37, no. 5,
pp. 237–252, 2003.

[40] E. J. Schwartz, T. Avgerinos, and D. Brumley, “All you ever wanted to
know about dynamic taint analysis and forward symbolic execution (but
might have been afraid to ask),” in Proc. IEEE Symp. Security Privacy,
2010, pp. 1–15.

[41] M. A. Hall, “Correlation-based feature subset selection for machine
learning,” Ph.D. dissertation, Dept. Comput. Sci., Univ. Waikato,
Hamilton, New Zealand, 1998.

[42] W. K. Charles, S. João, K. N. Kelvin, L. Vincent, and H. U. Lyle,
“Fast network simulation through approximation or: How blind men
can describe elephants,” in Proc. ACM HotNets, 2018, pp. 141–147.

[43] Y. Wen, R. Wolski, and G. Moore, “DiSenS: Scalable distributed sen-
sor network simulation,” in Proc. 12th ACM SIGPLAN Symp. Princ.
Practice Parallel Program., 2007, pp. 24–34.

[44] E. G. Boman, Ü. V. Çatalyürek, C. Chevalier, and K. D. Devine, “The
Zoltan and Isorropia parallel toolkits for combinatorial scientific com-
puting: Partitioning, ordering and coloring,” Sci. Program., vol. 20, no. 2,
pp. 129–150, 2012.

[45] M. Samek, Use an MCU’s Low-Power Modes in
Foreground/Background, Quantum Leaps, Pittsboro, NC, USA,
2007.

[46] Y. Mo, C. Goursaud, and J.-M. Gorce, “Theoretical analysis of UNB-
based IoT networks with path loss and random spectrum access,” in
Proc. 27th IEEE Int. Symp. Pers., Indoor Mobile Radio Commun.
(PIMRC), 2016, pp. 1–6.

[47] Medium Access Control (MAC) Protocol Specification (Release 14),
V14.3.0, 3GPP Standard TS 36.321, Jun. 2017.

[48] Multiplexing and Channel Coding (Release 14), V14.3.0, 3GPP Standard
TS 36.212, Jun. 2017.

[49] K. Klues et al., “TOSThreads: Thread-safe and non-invasive preemption
in TinyOS,” in Proc. SenSys, 2009, pp. 127–140.

[50] C. Y. Yeoh, A. Bin Man, Q. M. Ashraf, and A. K. Samingan,
“Experimental assessment of battery lifetime for commercial off-the-
shelf NB-IoT module,” in Proc. IEEE 20th Int. Conf. Adv. Commun.
Technol. (ICACT), 2018, pp. 223–228.

[51] F. Wibowo, “Wireless communication design of Internet of Things based
on FPGA and WiFi module,” in Proc. J. Phys. Conf. Series, 2020,
Art. no. 12035.

[52] G. Guan, W. Dong, Y. Gao, K. Fu, and Z. Cheng, “TinyLink: A holis-
tic system for rapid development of IoT applications,” in Proc. ACM
MobiCom, 2017, pp. 1–29.

[53] A. Mackey and P. Spachos, “LoRa-based localization system for emer-
gency services in GPS-less environments,” in Proc. Conf. Comput.
Commun. Workshops (INFOCOM WKSHPS), 2019, pp. 939–944.

[54] A. K. Sultania, C. Delgado, and J. Famaey, “Implementation of NB-IoT
power saving schemes in ns-3,” in Proc. Workshop Next Gener. Wireless
NS-3, 2019, pp. 1–4.

[55] Y. Gao, J. Zhang, G. Guan, and W. Dong, “LinkLab: A scalable and
heterogeneous testbed for remotely developing and experimenting IoT
applications,” in Proc. IEEE/ACM 5th Int. Conf. Internet-Things Design
Implement. (IoTDI), 2020, pp. 176–188.

Authorized licensed use limited to: Tencent. Downloaded on November 23,2023 at 12:33:19 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

