Enabling Fast and Stable Service Mesh Communication via

Piggyback Layer-7 Traffic Control on Programmable Switches

Gonglong Chen!, Jiacong Li3, Yuxin Xu!?2, Baiyan Ke?, Zhitao Lan’, Wenxing Ge?,
Haiying Shen®, Jiamei Lv’, Tao Gu®, Chengzhong Xu’, and Kejiang Ye'*

I'Shenzhen Institutes of Advanced Technology, CAS, *University of CAS, 3Northeastern University.
4Foshan University. “Independent Researcher. *University of Virginia. ’Zhejiang University.
8Macquarie University. *University of Macau.

Email: {gl.chen2, yx.xu2 ,kj.ye}@siat.ac.cn, li.jiaco@northeastern.edu, {zhitaolan, vincentge95}@ gmail.com,
baiyanke29 @ gmail.com, lvim @ zZju.edu.cn, hs6ms @virginia.edu, czxu@um.edu.mo, tao.gu@mgq.edu.au

Abstract—Service mesh has become an essential infrastructure
for managing cloud-native microservices, widely adopted by ma-
jor providers to streamline service orchestration and reduce oper-
ational overhead. A core component of service mesh architecture
is the sidecar proxy, managing policy-based routing, Layer-7 load
balancing, and related functions. Traditional per-pod distributed
sidecar deployments route all inter-pod communication through
local proxies, introducing substantial resource consumption and
inefficiencies. Recent approaches advocate for centralized proxy
deployments to offload compute-intensive modules to gateway
nodes; however, this design introduces non-trivial traffic detours
and exacerbates network congestion.

To overcome these limitations, we propose PiggyCar, a novel
service mesh communication system that piggybacks Layer-7
traffic control onto programmable network devices. In PiggyCar,
resource-intensive tasks are offloaded to intermediary switches
along inter-pod paths, enabling in-network execution of advanced
network functions. PiggyCar incorporates a latency-aware offline
planner for optimal network policy placement and a stability-
oriented online scheduler that dynamically adapts to traffic
fluctuations in real time. We prototype PiggyCar on a testbed
comprising six servers and four programmable switches. Exper-
imental results show that PiggyCar cuts latency by up to 97.2%
compared to Canal, boosts throughput by up to 1.82x under
high RPS conditions, and consistently delivers the lowest network
jitter.

I. INTRODUCTION

Service mesh is a critical infrastructure for cloud mi-
croservices, adopted by providers such as AWS [1], Azure
[2], GCP [3], and Alibaba [4] to streamline management
and reduce costs. Studies show that up to a 40% boost in
development speed and $40,000 in monthly savings [5], [6].
A key component in the service mesh frameworks like Istio
[7] and Linkerd [8] is the sidecar proxy, which handles policy-
based routing, Layer-7 (L7) load balancing, and A/B testing.
However, traditional per-pod distributed sidecar deployments
force all inter-pod communication through the proxy (as shown
in Fig. 1(a)), incurring over 30% CPU and 25% memory
overhead [9], [10], [11] and potentially doubling latency.

To mitigate the high resource consumption of traditional
per-pod sidecars, recent works propose centralized deploy-
ments such as Ambient Mesh [12] and Canal Mesh [9].

*Corresponding author.

These approaches offload resource-intensive modules from
individual pods. Ambient Mesh [12] uses a Layer-4 (L4)
proxy on each node and centralizes L7 processing. Canal
Mesh [9] shifts these modules to a public cloud to reduce
per-tenant resource usage. However, centralized deployments
force inter-pod traffic detouring even when pods reside on
the same node (as shown in Fig. 1(b)). This detouring causes
extra hops and increases bandwidth consumption. Intermediate
devices experience higher buffer occupancy. Our experiments
in Section II indicate that under DCTCP (a congestion control
algorithm widely adopted by major cloud vendors [13], [14]),
the congestion control mechanism is triggered earlier, which
leads to a nearly 53% drop in throughput.

To address the aforementioned issues, we propose Piggy-
Car, a piggyback service mesh communication system (as
shown in Fig. 1(c)). In PiggyCar, resource-intensive and time-
consuming modules are extracted and deployed on intermedi-
ary network devices along the inter-pod communication links.
Traffic between pods is processed by these devices, which
execute rich network functions such as L7 load balancing and
policy-based routing on the fly. Unlike existing distributed
approaches (e.g., Istio [7]) that burden user pods with heavy
resource consumption or centralized schemes (e.g., Canal [9])
that require detouring traffic to remote gateways for policy
parsing, PiggyCar integrates policy parsing directly into the
communication path. This piggyback approach minimizes pod
resource overhead and avoids detouring-induced throughput
loss, yielding a truly sidecar-transparent experience for appli-
cations.

However, achieving the above piggyback service mesh faces
the following challenges: Challenge 1: parsing complex
L7 policies on programmable switches under zero-trust
constraints. Implementing rich L7 network policies (e.g., load
balancing) on programmable switches is challenging. These
switches typically parse fixed-length headers (like IP and
port) and cannot directly handle variable-length, string-based
protocols (such as HTTP) due to the hardware limitations
[15]. Moreover, service mesh traffic is encrypted to support
zero-trust, so decryption is required before any L7 parsing. To
address this, we propose a decoupled L7 parsing approach. A
rule-based on-node proxy performs rapid, minimal-overhead

[Node [pod [A] Access switch Core switch
ETC

ongestion!t
'E\ 1

PiggyCar,

A)
Side
car

(a) Distributed sidecar
(e.g., Istio).

1
1

proxy
(2

(c) Piggybacked sidecar
(ours).

Fig. 1: The comparison of existing works with PiggyCar.
(a) incurs significant resource overhead on each pod, while
(b) results in a many-to-one traffic pattern that doubles the
likelihood of congestion. In contrast, (¢) offloads intensive
pod operations to intermediary network devices, thereby
enabling direct pod-to-pod communication to reduce la-
tency.

(b) Centralized sidecar
(e.g., Canal, Ambient).

traffic classification and directly assigns a policy ID to the
outer VXLAN header. The programmable switch then relies
solely on the unencrypted outer header for policy matching
and traffic management, eliminating the need for heavy packet
inspection. This streamlined design minimizes resource usage
and simplifies implementation. On-the-fly matching reduces
on-node proxy overhead by over 90% (see Section III-C), and
periodic randomization of policy IDs further enhances security.

Challenge 2: optimally deploying network policies on
programmable switches. Determining which programmable
switch should host a network policy is non-trivial. Our goal
is to achieve in-path piggybacked policy parsing for any
pod pair to minimize end-to-end latency. However, selecting
the optimal switch maps to the NP-hard Capacitated Facility
Location Problem [16]. We design a heuristic algorithm to
efficiently identify switches on critical communication paths
(Section III-D). The algorithm leverages topology information
to reduce overall latency and avoid unnecessary detours. This
approach ensures rich network policies are deployed to provide
a minimal pod-to-pod communication latency.

Challenge 3: adapting to runtime traffic variations
for stable communications. Runtime traffic fluctuations may
cause the number of sessions associated with network policies
to exceed the SRAM capacity of programmable switches.
When this capacity is exceeded, sessions are forced to use
slower lookup paths (i.e., through switch CPU memory),
reducing overall throughput. To address this issue, we propose
a lightweight, distributed, stability-oriented online scheduler
(Section III-E). Programmable switches monitor their resource
utilization and exchange minimal state information with neigh-
boring switches. A heuristic algorithm quickly computes op-
timal migration strategies for both policies and sessions. The
algorithm balances the load and prevents resource overflow.
This dynamic adaptation minimizes the risk of reduced ap-
plication throughput and network jitter under varying traffic
conditions, thereby achieving stable communications.

We prototype PiggyCar on a testbed of six servers and four
programmable switches and simulate it on large-scale clusters.
Both experiments demonstrate that PiggyCar achieves low
latency and high stability (Section V). We evaluate PiggyCar

using a typical serverless scenario for car parking detection
and charging [10]. The results show that PiggyCar reduces
latency by up to 97.2% compared to Canal [9] and improves
throughput by 1.82x under high RPS. In addition, PiggyCar
consistently achieves the lowest network jitter and maintains
the highest proportion of flows with minimal flow completion
times.
This paper makes the following contributions:

« We analyze existing service mesh frameworks and iden-
tify key limitations. Some works use per-pod distributed
sidecars. These burden user pods with heavy resource
consumption. Other works use centralized sidecars. These
force traffic detours to remote gateways for policy pars-
ing. Neither design achieves fast and stable service mesh
communications under heavy traffic (Section II).

o We design PiggyCar, a piggyback service mesh commu-
nication system. In PiggyCar, resource-intensive modules
are extracted and deployed on intermediary network de-
vices along inter-pod communication links. These devices
process traffic on the fly, efficiently executing functions
such as L7 load balancing and policy-based routing
(Section III).

o We implement a PiggyCar prototype on a testbed of six
servers and four programmable switches. We evaluate it
using a typical serverless scenario. The experiments show
that PiggyCar significantly reduces latency and improves
stability compared to state-of-the-art solutions (Section
IV and Section V).

II. BACKGROUND AND MOTIVATIONS

In this section, we introduce the benefits of the service
mesh framework for modern cloud applications and its key
component, the sidecar. We then assess the limitations of both
the distributed per-pod and centralized sidecar approaches.

A. The Benefits of Service Mesh Framework

Service mesh is an infrastructure layer that orchestrates
service-to-service communication in cloud-native microser-
vice architectures [17], [18], [19], [20], [21]. Major cloud
providers, including AWS [1], Azure [2], GCP [3], and Al-
ibaba [4], offer service mesh-based products that simplify
development and reduce costs. Recent studies report that
service mesh frameworks can increase development speed by
up to 40% [5] and cut monthly costs by approximately $40,000
[6].

A key component in many service mesh frameworks, such
as Istio [7] and Linkerd [8], is the sidecar proxy. The sidecar
manages pod network traffic by performing tasks including
policy-based routing, load balancing, and rate limiting. For
example, to conduct an A/B test in a serverless application, one
may configure the routing rules as follows: Host: reviews.com,
route: vI(80%), v2(20%). This rule directs 80% of traffic
from POST requests with the host reviews.com to the vl
backend service, and 20% to the v2 service. The sidecar
applies these policies automatically, eliminating the need for

100 = ST

[4 i h .

8o ! /Zlﬁﬁiimn : g 300
Ze0 : 2420
50 1! = =10kRPS § 2200

o 7 o]
gaon 25kRPS £ X180
20 n -+~ 50kRPS 5 2%
O [} Lidolelobdolojobsdcolel | | | || [50

0 L

0 200 400 600 800 1000
Queue length(# of packts)

30 40 50
Request Rate(kRPS)

(b) TCP window size@Server 1.

(a) Queue length@core switch.

Fig. 2: The throughput degradation in a centralized
sidecar setup due to the many-to-one traffic pattern.
On a 100Gbps server-access link, transmission rates ap-
proaching 47.8Gbps (nearly 25kRPS per server) trigger
congestion control at the core-access link, reducing average
application throughput by almost 53%.

modifications to the application logic and enabling flexible
traffic management.

B. The Problems of Traditional Sidecar

Traditional service mesh frameworks use a distributed side-
car deployment (e.g., Istio [7]). Each pod is paired with a
dedicated sidecar proxy that intercepts all traffic for fine-
grained control (see Fig. 1).

Problems. Although this approach decouples networking
from application logic, it consumes significant pod resources.
Sidecars have been shown to use over 30% of CPU and more
than 25% of memory [9]. This resource overhead limits the
capacity available for core application functions. Experimental
data indicates that when a pod’s CPU usage exceeds 45%,
inter-pod communication latency doubles, and when it exceeds
75%, latency can increase up to 100-fold [9].

C. The Issues of Recent Works

To address the high resource consumption and performance
overhead of per-pod sidecar deployments, recent research has
proposed centralized sidecar approaches, such as Ambient
Mesh [12] and Canal Mesh [9]. These approaches extract time-
consuming functions from per-pod sidecars and deploy them
in a single gateway, thereby reducing per-pod resource usage.

Ambient Mesh [12] deploys a node-level L4 proxy and
a shared L7 proxy (the centralized gateway) to cut pod
interference and local resource usage. However, retaining both
proxies within the user cluster may lead to resource contention
and limited isolation during peak workloads. In contrast,
Canal Mesh [9] offloads most sidecar functions from the user
cluster to a centralized mesh gateway in the public cloud.
This strategy further minimizes pod resource consumption and
achieves a balanced offloading approach.

Issues. Nonetheless, both approaches share a key drawback:
all pods, even those on the same node, must route traffic
through a remote centralized gateway (see Fig. 1(b)). This
extra hop increases data center traffic and raises the risk of
congestion and packet loss, leading to higher latency and
lower throughput. For example, compared with the distributed

Centralized Controller
Latency-aware Offline Planner (Sec. 111-D)

o 1 | optimizer |
(] 1 II Service mapping
Device | _ .
Status e !
@. N oo | @l ~~~~~~ @l
é? \Programmable Programmable :
Network I Switch switch , Node Node
\Status | Tf T T T
= Programmable Switch CPU
Device/Network
Sidecar Status Collector Scheduler
Rules] - .
PPN Rule Migration
‘@\. Strategy
Rule Scale
Stability-oriented Online Scheduler (Sec. llI-E)

\Estimations
Fig. 3: The overview of PiggyCar.

sidecar in Fig. 1(a), the centralized approach adds 2x trans-
mission hops. This creates a many-to-one traffic pattern that
doubles the traffic volume on the link between access switch
A3 and core switch C. Existing studies [13], [14] show that
this doubling accelerates the triggering of congestion control.
Under DCTCP (a congestion control algorithm widely adopted
by major cloud vendors [13]), such conditions typically reduce
application throughput by nearly half.

Furthermore, we assessed the impact of network detours
on switch queues and throughput under various request rates.
Using the configuration from Section V, the Car Parking
detection scenario sends 1.9Mb of image recognition data per
request over 100Gbps inter-switch links, with requests evenly
distributed across five nodes. The congestion control threshold
is set at 359 packets according to DCTCP [13], [14]. Results
show that when the single server-access link reaches about
47.8Gbps (25kRPS per server), nearly 100Gbps of traffic is
generated at the core switch, quickly saturating the buffers
(as shown in Fig. 2). This surge triggers congestion control,
halving the TCP window and reducing application throughput
by up to 53%.

III. DESIGN

A. Key Idea and Overview

Key idea. To address the issues of the high resource con-
sumption and increased latency in distributed sidecar deploy-
ments (Fig. 1(a)) and the network detouring, queue buildup,
and severe throughput loss in centralized sidecar deployments
(Fig. 1(b)), we propose a piggybacked sidecar deployment
scheme, PiggyCar (Fig. 1(c)). PiggyCar maintains optimal
communication links between pods, avoiding detours that con-
tribute to congestion. It offloads time-consuming tasks, such as
L7 fine-grained traffic control, to programmable switches that
act as mandatory nodes along the optimal path. This strategy
significantly minimizes resource consumption on the pods.

Fig. 3 provides an overview of PiggyCar, which comprises
two modules: a latency-aware offline planner integrated with

Requester Backend
Pods Q(r) ____ PiggyCar Pods K(r)
Access
Switch
Core

Switch

Programmable Switches M,,; MB SRAM

Fig. 4: The system model of service mesh architecture with
PiggyCar.

the Istio [7] controller, and a scalability-oriented online sched-
uler on programmable switches that promptly adapts to traffic
changes. Note that in this paper, our primary focus is on
efficiently implementing the key traffic control functionality
of sidecars on programmable switches. For the other two
functions, namely zero-trust security and observability, we
adopt an approach similar to Canal [9]: A dedicated key
server generates asymmetric keys to reduce pod overhead,
and observability is shifted from L7 to L4 to lower resource
consumption while preserving essential monitoring.

The latency-aware offline planner computes optimal rule
assignments for programmable switches. It takes system status
(e.g., network topology and etc) and user-provided service
mesh information (e.g., the estimated concurrent user count
for each rule) as input. When deploying these rules, the
planner considers on-chip SRAM limitations and prevents
rule placements from forcing network detours between pods.
Since this problem reduces to the NP-hard capacitated facility
location problem [16], we employ a heuristic algorithm to find
a near-optimal solution.

The stability-oriented online scheduler dynamically ad-
justs rule deployments when actual concurrency exceeds esti-
mates. It makes minimal-overhead adjustments to maintain low
latency while scaling to more users. This module uses switch
session statistics, traffic measurements, and lightweight link
data to determine a cost-effective configuration that minimizes
delay.

B. System Model and Basic Notations

Fig. 4 shows the system model of service mesh architec-
ture with PiggyCar, which forms a typical CLOS topology
[22], [23] denoted by G = (N,E). Where N comprises pro-
grammable switches and pods, and E represents the links.
Each pod initially connects to an access switch that, in turn,
connects to core switches, with no direct links between access
switches or among core switches; this design follows standard
industry practices [22], [23]. Each programmable switch n;
has a maximum SRAM capacity M,, and a current usage n1,,.
Given a set of rules R with an estimated session scale x,
per rule, each switch is allocated x(n;) = ¥,cgz(n;, r)x, rule

@App Traffic
GET /HTTP/1.1
Host: app1; end-user: json

@Traffic Classification

Node

.................... H{roa) () (]

On-node proxy

service_mapping_table

host=app1

i vxid=id1
end-usersjson’ | " | | pkt ¢-— dip=piggycar_IP | sip=Pod_IP | vxlan_id=id1
vxid=id2

host=app1 Enc[App Traffic]

@Rule Offload Determination

Key Action
[vidice | out_cip=1r, |

@ Session Generation

full_rule_table |'--

Rule_type=LB,
Method=Random,
Backend_list= [Py, IP,]

Progr ble Switches

Function_offload

_table
Switch ASIC

Switch CPU

TC_session

switch? fL __table

vxid=id1

Fig. 5: The decoupled L7 traffic control.

sessions, z(n;,r) is a binary variable indicating whether rule r
is allocated to switch n;. The function_offload_table then maps
the VXLAN_ID id to the appropriate switch IP based on this
allocation (as we detailed in Section III-C).

For any two nodes (e.g., node s and node ¢) in the topology,
the communication path p(s,t) is derived using the underlay
BGP protocol by appending the AS_PATH field to the routing
information. Each pair of neighboring nodes establishes an
eBGP relationship, so each node receives an AS_PATH ID
that is visible at every hop during route exchange. This
mechanism enables precise link information between nodes.
We assume that when deploying a service mesh application,
the requester pod group Q(r) and the backend pod group K (r)
for each sidecar rule r can be identified. The communication
relationship between these groups is obtained via orchestration
logic similar to a service mesh workflow [24].

C. Decoupled L7 Traffic Control

Implementing advanced L7 traffic control (e.g., load balanc-
ing) on programmable switches is challenging. These devices
are designed for fixed-length headers (e.g., IP/port) and cannot
process variable-length, string-based protocols like HTTP due
to hardware constraints [15]. Additionally, zero-trust security
encrypts service mesh traffic, requiring decryption before
any L7 parsing. This decryption process poses implemen-
tation challenges (e.g., matrix multiplication) on resource-
constrained switches. To address the above challenges, we
propose a decoupled L7 traffic control approach. The on-
node proxy performs lightweight, rule-based L7 traffic classi-
fication, while programmable switches handle high-throughput
traffic control.

Lightweight on-node proxy. Specifically, as shown in
Fig. 5, the on-node proxy implements the table ser-
vice_mapping_table. This table quickly matches key fields
(e.g., host and end-user) in L7 traffic against user-specified
sidecar rules and allocates an associated service ID, id; (steps
® and @). Then, the VXLAN_ID in the outer header is

TABLE I: Input parameters of offline planner.

Variable Name
Network topology

Set of devices (pods and
programmable switches) N
Set of Ethernet links E
Set of core switches C
Maximum bandwidth capacity
per link (Gbps)

Maximum SRAM capacity of
programmable switches (MB)
Current utilized SRAM of
programmable switches (MB)
Communication path set
Individual communication path
(set of programmable switches) p(s,t) ={n;}
Load-balancing (LB) rule set R

Scale (count) of the rule X, forr € R
Traffic volume (Gbps) of the rule yr, for r€R
Source pod s, where s € N
Destination pod t, where t € N

Symbol
G=(N,E)

Bmax(€), where e € E

M,,, where n; € N

My, where n; € N
P={p(s,1)}, for (s,r) €N

Algorithm 1: Latency-aware offline planner.

Input : Parameters in Table 1.
Output: z(n;,r).
1 /*Define high-priority set Sy;g, as the core and aggregation
switches directly connected to all pods in Q(r) and K(r) */
2 Sjon N\ Shigh;
3 foreach r € R do
Secand Shigh 76 Q?Shigh * Stows
foreach n; € S.,,,4 do
T,, «<—estimate_latency(Q(r), K(r), n;);
Toi-append(Ty,);

D= N7 R N

Find the best nf?m with minimal latency from 7;;;
z(nf-’”’,r) —1;

10 | Update Spjgp Or Sy, where switches exceed My,;
11 Perform simulated annealing to avoid local optima;

12 procedure estimate_latency(Q(r), K(r), n;)

13 Find the maximum latency 7' from 0O(r) to ny;

14 Find the maximum latency 7). from n; to K(r);
15 return T} +Tg);

Requester pod group for a rule o(r)

Backend pod group for a rule K(r)
Communication pod group pair set C(r)=(0(r),K(r))
Basic link latency Thase (€)

replaced with id;, which enables the programmable switch to
perform traffic control based solely on this identifier.

Compared with traditional Envoy [25] (serving as the data
plane of Istio [7]) that performs complete traffic control on
the pod, our lightweight on-node proxy offers two major
enhancements. First, it employs a concurrent parsing and
matching strategy instead of waiting for the complete HTTP
tree to be constructed, which reduces node-side processing la-
tency by approximately 10.5%. Second, it offloads bandwidth-
intensive tasks, such as load balancing, to the programmable
switch, thereby further reducing node-side processing delays
by approximately 77.2% (Section V-A).

Scalable programmable switch boosted traffic con-
trol. As shown in Fig. 5, there are two tables, func-
tion_offload_table and full_rule_table, allocated in the data
plane and the control plane of the programmable switches.
The function_offload_table is used to determine which switch
should process the received packet and updates the outer
destination IP with the matched IP (step ®). If the matched
IP is local, TC_session_table (traffic control session table) is
enabled to match. Otherwise, the packet is forwarded to the
designated switch. When a session match is found, the tunnel’s
destination IP is updated to the backend service pod’s IP. If
no session match is found, the packet is sent to the switch
CPU where the full_rule_table is used to identify the proper
traffic control rule (step @). Based on this rule, an appropriate
backend service pod’s IP is selected, and the session table in
the switch’s ASIC data plane is updated accordingly.

D. Latency-aware Offline Planer

In this subsection, we provide a detailed description of how
to model the aforementioned fast service mesh communica-
tions based on the system model introduced earlier.

1) Metrics Modeling: The optimization goal is to de-
termine the optimal rule assignments z(n;,r) that minimize
the maximum communication latency between any pod pairs
C in the service mesh clusters. Let 7 denote the max-
imum latency among all pod group pairs C, defined as
T =max,cg seo(r),rek(r) T (15,t), where T (r,5,t) is the latency
between the requesting pod s and the backend service pod ¢
when the traffic control rule r is applied.

min T (D

The communication latency between any two pods can be
decomposed into two parts: the latency Tpp(r,s,t) from the
requesting pod s to the switch that processes rule r, and the
latency Tsyc(r,s,t) from that switch to the backend service
pod ¢. Then the latency can be computed as follows:

T (r,s,t) = Trp(r,s,t) + Tovc(r,s,t) 2)

Given the forwarding delay F(e,r) for the link e and the as-
sociated r, we can infer that Tp5(7;,$,1) = Yo p(sn,) F (€,7),and
TSVC(ra S,l) = ZeEp(ni,t) F(ea r)'

Thase (g)

e = en

3)

Where Tpu(e) denotes the basic RTT latency for the link
e under rule » when there is no congestion. It can be ob-
tained offline and remains relatively stable. The parameter
p(e,r) represents the bandwidth utilization ratio for the link
e under rule r, and the latency of link e is inferred as
ple,r) = Yrcr(e) #;(6) based on the M/M/1 queuing model
[26]. Here, R(e) denotes the set of rules that traverse link
e, which is expressed as R(e) = {r | e € E(r)}. The set
E(r) denotes the edges traversed by rule r and is derived as
E(r) = Useo(r),rex(n 1p(s:m:) Up(ni 1)}, for all n; such that
z(nj,r) = 1.

2) Solving the Problem: The above modeled rule assign-
ment problem that involves in considering the communication
latency (i.e., the cost of transmission) of pod pair and the
SRAM constraints of each switch (i.e., the capacity of facility)
on the road, can be reduced to the typical NP-hard problem
Capacitated Facility Location Problem [16].

Therefore, we propose a heuristic algorithm to solve it. As
shown in Algorithm 1, the overall algorithm comprises three
steps. 1) Switch prioritization. We prioritize the set of candi-
date switches for deployment. Switches that are more likely to
reduce the inter-pod communication latency are given higher
priority. If these high-priority switches cannot accommodate
all the rules, the remaining switches are considered. The high-
priority set includes the core switches and the aggregation
switches that are directly connected to every pod in the
pod group (lines 1 to 2). 2) Maximum latency calculation
simplification. For both high-priority and low-priority switch
sets, the latency between each pair of pods is simplified to the
sum of the maximum delays from two segments: the delay
between the requester pod s and the deployed switch n;, and
the delay from that switch n; to the backend service pod ¢
(lines 12 to 15). This approximation reduces the computational
complexity from O(kn?) to O(2kn), where k represents the
number of candidate switches, and n denotes the number of
initiating and backend pods (assumed to be of similar scale).
3) Simulated annealing. To avoid local optima, we employ a
simulated annealing algorithm that randomly exchanges rules
among the switches until either the desired latency reduction
is achieved or a predetermined number of iterations is reached
(line 11).

E. Stability-oriented Online Scheduler

Although the offline planner produces near-optimal rule
assignments, the actual session count may deviate from es-
timates. Indeed, application providers struggle to accurately
predict both the number of users and the generated traffic
volume [27].

Therefore, we propose a stability-oriented online adaptation
approach that runs on each switch. This method designs a
lightweight rule migration scheme by accounting for devia-
tions between observed values and the estimated session scale.
It prevents input estimation errors from exceeding the switch’s
resource capacity, which would otherwise lead to unstable
transmissions.

Trigger conditions. When the current programmable switch
neyr detects that the difference between observed values and
the estimated session scale exceeds the predefined threshold
AX, or that the utilized SRAM m,, ,, is approaching the thresh-
old Tsgap (with Tsgaps set slightly below the maximum SRAM
M, to preempt overflow), the rule migration optimization

Reur

algorithm is triggered. The trigger conditions are shown below:
Ox(neyr) > AX or (my,,,, > Tsram) - 4)

Ox(neyr) denotes the sum of differences between the ob-
served session amount and the estimated session scale for
all rules assigned to switch ng,,. It is defined as Sx(ng,,) =

Y cr 2(eur, 1) X2 — x,]. Here, x%” is the observed session count
for rule r.

1) Application Level Metrics: The goal of finding the best
migration strategy is defined as follows:

mn [I=ao- Emig + B 'Erer()ute
subject to 81" (n;) < AX (5)
my; < Tspam

Where Ep;, denotes the migration overhead and consists of
two parts, the session migration latency and the rule migration
latency. Eeroure denotes the potential reroute overhead when
applying a new rule assignment to the switches. 6x""(n;) de-
notes the updated differences of the observed session scale and
the expectations for all switches of PiggyCar, after applying
the above new rule assignment strategy z"¢"(n;,r). @ and f3
are two adjustable parameters that balance the importance of
the two overhead (In our experiments, we set o = 0.5 and
B =0.5).

2) Metrics Modeling: Constraints estimation. For the
constraint 6x""(n;) of all switches in PiggyCar, we derive
using the formula §x™" (n;) = 8x(n;) + ¥ er Az(ni, r) [x2 —x,],
where 0x(n;) denotes the difference (actual minus estimated)
for all rules on switch n; prior to migration, and Az(n;,r) =
7""(n;,r) —z(n;,r) captures the change in rule assignment. For
example, if rule r migrates from n; to n;,, then Az(n;,r) =
—1 and Az(njy1,r) = +1; for any other switch n;, Az(n;,r) =0.
The session difference [x?” —x,] for a migrating rule r remains
unchanged and can be obtained from 7n,,.

Thus, each switch in PiggyCar holds two types of rules:
those selected by n.,- for migration and those that are not.
For non-migrating rules, the assignment remains unchanged
(i.e., Az(n;,r) =0), so no additional session difference value
is required. For migrating rules, Az(n;,r) is provided by the
online scheduler algorithm, while the session difference is
observed at n.,,. Consequently, to infer §x"¢"(n;), each switch
only needs to send a single data value representing the session
difference for all its rules before performing the rule migration,
i.e., 0x(n;). While the current SRAM utilization m,, is also
directly collected from other switches on n.,.

Migration overhead E,,;,. The migration overhead is de-
termined by the slower of two operations, i.e., the session
migration latency and the rule migration latency, expressed
as:

Eonig = max{w,, ws} (6)

The rule migration is given by w, = max, ey &,,(D,), and
the session migration latency is ws; = max,,ene 0, (Ds),
with 8,,(D) = YeeP(nowny) %. B(e) denotes the rest of the
bandwidth for the link e.

The data sizes are defined as D, = u - len(Rﬁ“”) and Dy =
Zrest-x‘,’h . Here, u is the number of bytes for each rule in
the table function_offload_table, and s is the number of bytes
for each session in the table TC_session_table. Ri"” ={reRr|
Ox(neyr,r) > 0} denotes the set of rules whose session counts
exceed the expectation, dx(ng,,r) represents the difference
between the observed and expected session scales. Note that

all observation data is obtained solely from the current switch
neyr, €liminating the need for additional data collection from
other switches.

Reroute overhead E,., ;.. We infer the maximum commu-
nication latency after rule migration as

max

Tnew 3 7t 7
reR.seQ(r)teK(r) (rs))

Ereroute =
Where each rule’s new latency is given by T7°(rs,1) =
T(r,s,t) + AT(r,s,t). Here, T(r,s,t) is the initial latency
distributed during offline planning, and AT(r,s,t) represents
the additional delay incurred after migration. In particu-
lar, AT (r,s,t) is decomposed as AT(r,s,t) = AT p(r,s,1) +
ATsyc(r,s,t), with the key update based on the difference
between the actual delay observed on each switch edge and
the estimated delay, denoted by AF (e, r). Specifically, for each
rule r, the bandwidth utilization ratio change on link e is

/ _ Lrcrl(e) (y(r)h_y’) /
calculated as p’(e,r) = (e Where R (e) denotes

the set of rules that traverse link e after rule migration.

Broadcasting variation metrics for all rules incurs high
overhead. To optimize, we focus on reroute latency Eieroute-
Since prior work [28] indicates only 26% of applications
involve large transfers (>1GB) that dominate delay, we limit
synchronization to the top-k rules (R, e.g., k=20%). The
latency for the remaining rules is updated using a constant
AT*¢, significantly reducing network traffic.

3) Solving the Problem Online: When the trigger for online
rule scheduling is met, we propose the following heuristic
algorithm to improve the solving speed. 1) Candidate switch
selection: select the top-U switches S,,4; With the highest re-
maining SRAM, ensuring that their combined SRAM exceeds
the migration requirement. 2) Rule deployment decision: as
shown in Algorithm 2, the core idea is as follows: for rules
outside Ry, the detour overhead Eieroue 1S negligible, so we
only consider the migration overhead Ey;s (lines 7 to 8).
Moreover, if the candidate switch has a different role than
the current one, a one-hop transmission makes the migration
overhead negligible (lines 3 to 4). For rules in Ry, if the
candidate’s role differs, deployment is allowed provided the
detour delay does not increase (lines 5 to 6); otherwise, the
candidate with the smallest overall metric / is chosen (lines 9
to 12).

IV. IMPLEMENTATION

We prototyped PiggyCar using a centralized scheduler and
agents on both servers and switches to coordinate service
mesh rule assignments and enforce online rule adaptation. Our
implementation comprises over 4.5K lines of Python code for
the switch control plane, more than 350 lines of P4 code for
the programmable switch data plane, 3.4K+ lines of Python
code running on the controller server, and over 2K lines of
C++ code on the servers.

Central scheduler. It is implemented as a Python appli-
cation that periodically aggregates static topology data (e.g.,
server configurations and switch capacities) and dynamic net-
work metrics. When deploying new serverless applications, the

Algorithm 2: Stability-oriented online planner.

Input : my,, AF¥(e,r).
Output: 7" (n;,r).
1 foreach r € RJAC"” do

2 foreach n; € S.4,,4 do

3 if r ¢ Ry and Role_diff(ncyy, n;) then

4 | " (n,r) <= 1; break;

5 else if r € R, and Role_diff(ncyr, ni) and
T"%(r,s,t) < T'r,s,1)) then

6 | " (nj,r) < 1; break;

7 else if r ¢ Ry and not Role_diff(ncyr, n;) then

8 L Ln.append(Epjq (ni,my,));

9 else

10 L I.append(I(n;, my,, AF¥ (e, r)));

11 if Z"V(r) not set then

12 | Find n; with minimal L, or I, 2" (n;,r) = 1;

scheduler optimizes and disseminates computed rule assign-
ments and service mappings to programmable switch agents
via high-speed gRPC.

From user-specified Istio rule configuration files, we ex-
tract only the matching field information. This extracted data
is distributed to all on-node proxies to update their ser-
vice_mapping_table entries, reducing the transmission volume
by nearly 91%. Meanwhile, the complete configuration is
sent solely to a limited number of programmable switches,
significantly lowering the deployment overhead.

On-node proxy. It performs lightweight traffic matching.
Based on the classification results, it leverages eBPF to en-
capsulate packets within a VXLAN tunnel and updates the
VXLAN_ID to the service identifier corresponding to the
targeted service mesh service.

Programmable switch. /) Data plane: It contains two core
tables, i.e., fuction_offload_table and session_table. They are
all implemented as exact-match table. We leverage the switch’s
built-in aging mechanism to automatically purge stale entries.
This approach prevents long-inactive flows from occupying
valuable SRAM resources, thereby ensuring that memory is
effectively allocated to active traffic and maintaining overall
system efficiency. 2) Control plane. In addition to generating
sessions to the switch data plane according to the stored
service mesh rules, the control plane retrieves real-time fast-
path session capacity data from the switch data plane to
facilitate runtime rule migration and optimization strategies.

V. EVALUATION

We evaluate PiggyCar using a combination of small-scale
testbed experiments and large-scale simulations, and we com-
pare its performance against two of the most relevant existing
solutions, namely, Istio [7] and Canal [9].

Testbed deployment. As illustrated in Fig. 6, the testbed
includes six servers and four programmable switches equipped
with a Tofino ASIC [29]. One switch acts as the Core, while
the other three serve as Access switches. Two Access switches
each connect two servers via two 100Gbps links, the third

4@' Controller

Access3

INodes

— 100Gbps *1

Access1 AccessZ

Canal

,,,

Fig. 6: Testbed.

one connects to Canal gateway [9]. Among the servers (each
with a 96-core AMD CPU, a 100Gbps NIC, and 500GB
of memory, 95Gbps+ AES encryption/decryption capability),
four host service mesh nodes, one serves as the Canal gateway
[9], and one runs the central scheduler as the controller.

Workload setup. We deploy a typical serverless scenario,
i.e., car parking detection and charging [10], to examine the
improvements of PiggyCar. This scenario uses parking spot
snapshots to detect occupancy, extract and store vehicle license
plate metadata if needed, and charge parking fees accordingly
[10]. We use the CNRPark+EXT image dataset [30], every
240 seconds, 164 snapshots (350KB each) are sent to the
function chain, resulting in a nearly 1.91Mbps data rate for
each request. We vary the request from 10k request per
seconds (RPS) to examine the performance benefits obtained
by PiggyCar. The workload is generated evenly from all of
the above five service mesh nodes. We retrieved sample traffic
control rules from the Istio project [7] to generate 1,000
distinct rules for the car parking application and allocated
concurrent accesses in a 2:8 ratio based on the RPS settings,
thereby simulating a data center scenario where a small subset
of flows consumes most of the traffic [28].

Simulation settings. We perform simulations on a physical
server equipped with an Intel Core i9-9900K processor and
an NVIDIA GeForce RTX 2080 Ti GPU. We utilize a high
fielity network simulator NS-3 [31] to perform the large scale
simulation. We simulate ten thousand programmable switches
connecting ninety thousand servers and deployed one hundred
thousand rules to validate PiggyCar’s performance in large-
scale scenarios.

Results reveal that:

o PiggyCar achieves the lowest latency: it reduces latency

by up to 98.7% and 97.2% relative to Istio [7] and Canal
[9] under high RPS, respectively.

o PiggyCar achieves highest throughput, it significantly
improves the throughput by 15.1x and 1.82x compared
to [7] and Canal [9].

o PiggyCar consistently produces stale network transmis-
sions exhibiting the lowest network jitter and maintains
the highest proportion of flows with minimal flow com-
pletion times.

A. Testbed Experiments

Latency. Fig. 7 compares latency performance at various
kRPS in the testbed environment. At nearly 90kRPS, PiggyCar
reduces latency by up to 98.7% and 97.2% relative to Istio
[7] and Canal [9], respectively. This improvement is due

200

[N
(=]
vl

®lstio Canal PiggyCar _§ 180 | g ystio
104 L 160 +
— E_ 140 [@Canal
§>,103 ® 120
g g 100 | ®PiggyCar
20 5 80 -
= 2
2 § 0T
- gg 0 ’_I_IFI_I

< 20
o L

ITRTETRATETRTRTRR AR TR TRTR AR IRTRTARTTRUTRINI
20 40 60 80 100
kRPS

Fig. 7: [Testbed] P99 latency.

10 20 30 50 70 80 100 110
RPS

Fig. 8: [Testbed] Aggregated

throughput.
10 100 -
@ lstio -+-Canal -+ PiggyCar l- ________ '
_10% 80 - 1 .
£ ! _
glog gso L 'l o Istio
v w I Canal
gloz ©40 [} = PiggyCar
2 [
Z10t 20+ | :
fooormeresemenennanes
JERIINS...egrrooponoPRPIORMINTY ST P DN R
0 20 40 60 80 100 0 20 40 60 8 100
kRPS FCT (ms)
Fig. 9: [Testbed] Jitter. Fig. 10: [Testbed] Flow com-

pletion time.

to PiggyCar’s efficient piggyback execution of service mesh
policies, which prevents detour transmission among pods. We
also conduct experiments to demonstrate that reducing HTTP
tree analysis and eliminating complex load balancing can
lower the average on-node latency from 764us to 94us, an
87.1% reduction.

In contrast, Canal [9] suffers from centralized gateway
issues. At nearly 60k RPS, core-to-access3 traffic nears
100Gbps, even though access-to-server links average 50Gbps
(50% utilization). This heavy load pushes core buffers to their
limit, triggering ECN marking under DCTCP and causing
the application layer to reduce its sending rate, which in
turn increases request latency. Furthermore, Istio [7] shows
increased CPU utilization at around 10kRPS due to its per-
pod implementation, leading to higher per-packet processing
delays.

Throughput. Fig. 8 presents aggregated throughput perfor-
mance at varying request rates. Throughput was calculated
by aggregating the processed requests across all pods. Ex-
perimental results show that at nearly 100kRPS, PiggyCar
achieves improvements of up to 15.1x and 1.82x compared
to the Istio [7] and Canal [9], respectively. This enhancement
is attributed to PiggyCar’s ability to avoid traffic detours and
reduce redundant network transmissions, thereby lowering the
probability of network congestion.

Jitter. Fig. 9 presents the average network jitter performance
under various request rates, where jitter is defined as the
absolute difference between the per-flow delay measurements
and the average delay. The experimental results indicate that
PiggyCar reduces network jitter by 98.9% and 97.9% com-
pared to Istio [7] and Canal [9] at nearly 100kRPS, respec-

[

;g:gorel --C?rez A£c+e§_sl_* e $
A A A A A R A S A S A A A A R A A AR A A S AR A

NUINO
ououno

(x100)

o

1 3 5 7 91113151719212325272931333537394143454749

LULLLLLLLLUALLALEUA LA LA LAL L L LLALLALLALLAL

1 35 7 91113151719212325272931333537394143454749
Time (x100 ms)

of Sessions

N U
w1 o

o

P9
Latency(ms)

Fig. 11: [Simulation] The session scale and p99 latency
when running online adaptation (40kRPS).

tively. When the RPS reaches around 10k, Istio [7] experiences
significant jitter due to pod CPU exhaustion, which prevents
packet forwarding. As for Canal [9], approaching 60kRPS trig-
gers network congestion control, causing persistent and large
fluctuations through continuous adjustments of the TCP trans-
mission window. In contrast, PiggyCar significantly minimizes
redundant network traffic and maintains stable performance
even at high RPS.

Flow completion time. Fig. 10 presents the results for flow
completion time (FCT). We tested three approaches, PiggyCar,
Istio [7], and Canal [9], across 65 scenarios with request rates
ranging from 1k to 110k RPS, with each scenario running for
one minute. The FCT from all scenarios was aggregated into
a distribution plot. Results indicate that PiggyCar increases
the probability of achieving lower flow completion times by
6x and 1.9 x compared to Istio [7] and Canal [9], respectively.
Moreover, PiggyCar maintained flow completion times around
22ms in over 90% of cases, whereas Istio and Canal achieved
such low delays in only approximately 15% and 46.1% of
cases, respectively.

B. Simulation Experiments

Fig. 11 illustrates the changes in fast-path session specifica-
tions across several key switches, as well as the network-wide
p99 latency, in a simulated environment running the runtime
adaptive session migration algorithm. Results show that our
proposed algorithm can promptly detect deviations from ex-
pected session scales and quickly adjust session migrations
to maintain stable p99 latency. Specifically, at approximately
500ms, a surge in sessions occurred on the Corel switch,
persisting for 200ms. This anomaly was detected at 700ms,
at which point the optimal migration plan was computed
and executed: rules contributing to high p99 latency were
migrated to the Core2 switch (which had greater remaining
SRAM capacity and shorter reroute latency), while a few low-
latency rules were transferred to the Accessl switch. As a
result, the overall network p99 latency increased by only 1ms.
Subsequently, similar session surges at 2000ms and 3400ms
on the Corel and Core2 switches were also promptly mitigated
through timely session and rule migrations, ensuring that p99
latency remained consistently low.

VI. RELATED WORK

Performance optimizations for service mesh frame-
works. Existing efforts optimize service mesh by offload-
ing functions to gateways [9], leveraging eBPF and shared
memory [10], or enhancing scheduling and routing strategies

[32], [33], [34], [35]. Others focus on hardware acceleration
or architectural simplification [36], [37], [38], [39]. However,
most approaches still rely on external gateways, per-pod
proxies, or specialized hardware. In contrast, PiggyCar inte-
grates sidecar functionality directly onto intermediary switches
using piggyback parsing. This design eliminates the need for
extra gateways or proxies, significantly conserving user pod
resources.

Traffic control on programmable switches. Prior works
utilize programmable switches for L7 [15], [40] or L4 [41],
[42], [43], [44] load balancing. These solutions typically
adopt a centralized switch cluster design, which overlooks
the potential of switches as direct interconnects, leading to
traffic detours and congestion. PiggyCar addresses this by
employing a piggyback-style traffic control mechanism that
maintains optimal communication paths between pod pairs,
thereby reducing latency and avoiding redundant traffic.

VII. CONCLUSION AND FUTURE WORKS

This paper introduces PiggyCar, a piggyback service mesh
communication system. In PiggyCar, resource-intensive and
time-consuming modules are offloaded to intermediary net-
work devices along inter-pod links, enabling on-the-fly execu-
tion of rich network functions such as Layer-7 load balancing.
PiggyCar employs a latency-aware offline planner for network
policy placement and a stability-oriented online scheduler to
promptly adapt to runtime traffic fluctuations. We prototype
PiggyCar on a testbed of six servers and four programmable
switches. Experimental results show that PiggyCar reduces
latency by up to 97.2% compared to the state-of-the-art
Canal and improves throughput by 1.82x under high RPS
(requests per second), while consistently achieving the lowest
network jitter and the highest proportion of flows with minimal
completion times.

In the future, there are several avenues to explore. First, we
plan to enhance L7 observability on programmable switches
to improve debugging and operational transparency. Second,
we will implement encryption and decryption functions on
programmable switches for deep payload parsing, thereby
providing richer application-layer insights.

ACKNOWLEDGMENT

This work is supported by the National Key R&D Program
of China (No. 2025YFE0204100), Science and Technology
Development Fund of Macao S.A.R (FDCT) under number
0074/2025/AM], the National Natural Science Foundation of
China (No. 92267105), Guangdong Basic and Applied Basic
Research Foundation (No. 2023B1515130002), Key Research
and Development and Technology Transfer Program of Inner
Mongolia Autonomous Region (2025YFHHO0110), Shenzhen
Basic Research Program (No. JCYJ20250604183035046, No.
JCYJ20220818101610023, No. KJZD20230923113800001),
Ningbo Yongjiang Talent Project, U.S. NSF grants NSF-
2421782, NSF-2350425, NSF-2319988, NSF-2206522, Mi-
crosoft Research Faculty Fellowship 8300751, Amazon re-
search award.

[2]
[3]
[4]
[5]

[6]

[7]

[8]
[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]
[18]
[19]

[20]

[21]

[22]

[23]

[24]

REFERENCES

AWS, “Aws app mesh,” 2024. [Online]. Available: https://aws.amazon
.com/app-mesh/

Azure, “Azure service fabric,” 2024. [Online].
/lazure.microsoft.com/en-us/products/service-fabric
Google, “Google cloud service mesh,” 2024. [Online]. Available:
https://cloud.google.com/products/service-mesh

Alibaba, “Alibaba cloud service mesh,” 2024. [Online]. Available:
https://www.alibabacloud.com/en/product/servicemesh

R. Duke, “How cloud-native architectures enable faster product
releases in high-change environments,” 2025. [Online]. Available: https:
//medium.com/@richarddukeusa/how-cloud-native-architectures-enabl
e-faster-product-releases-in-high-change-environments-dff0f3229e51
Flynn, “How service mesh can reduce the cost of running modern
applications,” 2022. [Online]. Available: https://www.spiceworks.com/t
ech/networking/guest-article/how-service-mesh-can-reduce-the-cost-o
f-running-modern-applications/

Istio, “Istio: simplify observability, traffic management, security, and
policy with the leading service mesh,” 2025. [Online]. Available:
https://istio.io

Linkerd, “Linkerd: the world’s most advanced service mesh,” 2025.
[Online]. Available: https://linkerd.io/

E. Song, Y. Song, C. Lu, T. Pan, S. Zhang, J. Lu, J. Zhao, X. Wang,
X. Wu, M. Gao, Z. Li, Z. Fang, B. Lyu, P. Zhang, R. Wen, L. Yi,
Z. Zong, and S. Zhu, “Canal mesh: A cloud-scale sidecar-free multi-
tenant service mesh architecture,” in Proceedings of ACM SIGCOMM,
2024.

S. Qi, L. Monis, Z. Zeng, 1.-c. Wang, and K. K. Ramakrishnan, “Spright:
extracting the server from serverless computing! high-performance ebpf-
based event-driven, shared-memory processing,” in Proceedings of ACM
SIGCOMM, 2022.

Q. Chen, J. Qian, Y. Che, Z. Lin, J. Wang, J. Zhou, L. Song, Y. Liang,
J. Wu, W. Zheng, W. Liu, L. Li, F. Liu, and K. Tan, “Yuanrong: A
production general-purpose serverless system for distributed applications
in the cloud,” in Proceedings of ACM SIGCOMM, 2024.
Istio, “What is istio ambient mode,” 2025. [Online].
https://www.solo.io/topics/ambient/ambient-mode

A. Dhamija, B. Madhavan, H. Li, J. Meng, S. Khare, M. Rao, L. Brakmo,
N. Spring, P. Kannan, S. Sundaresan, and S. Ghorbani, “A large-scale
deployment of dctcp: operational systems track,” in Proceedings of
USENIX NSDI, 2024.

M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prab-
hakar, S. Sengupta, and M. Sridharan, “Data center tcp (dctcp),” in
Proceedings of the ACM SIGCOMM, 2010.

X. Shi, L. He, J. Zhou, Y. Yang, and Y. Liu, “Miresga: Accelerating
layer-7 load balancing with programmable switches,” in Proceedings of
ACM WWW, 2025.

P. B. Mirchandani and R. L. Francis, Discrete Location Theory. Wiley,
1990. [Online]. Available: https://search.worldcat.org/title/19810449?0
cleNum=19810449

G. Antichi and G. Rétvari, “Full-stack sdn: The next big challenge?” in
Proceedings of ACM SOSR, 2020.

S. Ashok, P. B. Godfrey, and R. Mittal, “Leveraging service meshes as
a new network layer,” in Proceedings of ACM HotNets, 2021.

J. a. T. Duarte Maia and F. Figueiredo Correia, “Service mesh patterns,”
in Proceedings of EuroPLop, 2023.

M. Klein, “Lyft’s envoy: Experiences operating a large service mesh,”
2017. [Online]. Available: https://www.usenix.org/conference/sreconl7
americas/program/presentation/klein

X. Zhu, W. Deng, B. Liu, J. Chen, Y. Wu, T. Anderson, A. Krishna-
murthy, R. Mahajan, and D. Zhuo, “Application defined networks,” in
Proceedings of ACM HotNets, 2023.

K. Qian, Y. Xi, J. Cao, J. Gao, Y. Xu, Y. Guan, B. Fu, X. Shi, F. Zhu,
R. Miao, C. Wang, P. Wang, P. Zhang, X. Zeng, E. Ruan, Z. Yao, E. Zhai,
and D. Cai, “Alibaba hpn: A data center network for large language
model training,” in Proceedings of the ACM SIGCOMM, 2024.

A. Gangidi, R. Miao, S. Zheng, S. J. Bondu, G. Goes, H. Morsy,
R. Puri, M. Riftadi, A. J. Shetty, J. Yang, S. Zhang, M. J. Fernandez,
S. Gandham, and H. Zeng, “Rdma over ethernet for distributed training
at meta scale,” in Proceedings of the ACM SIGCOMM, 2024.

Z.Li, Y. Liu, L. Guo, Q. Chen, J. Cheng, W. Zheng, and M. Guo, “Faas-
flow: enable efficient workflow execution for function-as-a-service,” in
Proceedings of ACM ASPLOS, 2022.

Available: https:

Available:

[25]

[26]

[27]

(28]

[29]

(30]

(31]

[32]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

Envoy, “Envoy is an open source edge and service proxy, designed
for cloud-native applications,” 2025. [Online]. Available: https:
//www.envoyproxy.io/

A. Lazar, “The throughput time delay function of an m/m/l queue
(corresp.),” IEEE Transactions on Information Theory, vol. 29, no. 6, p.
914-918, 2006.

S. Di, D. Kondo, and W. Cirne, “Host load prediction in a google
compute cloud with a bayesian model,” in Proceedings of SC, 2012.
S. Eismann, J. Scheuner, E. v. Eyk, M. Schwinger, J. Grohmann,
N. Herbst, C. L. Abad, and A. Iosup, “The state of serverless appli-
cations: Collection, characterization, and community consensus,” I[EEE
Transactions on Software Engineering, vol. 48, no. 10, pp. 4152-4166,
2022.

Intel, “Intel intelligent fabric processors,” Online: https://www.intel.co
m/content/www/us/en/products/details/network-io/intelligent-fabric-pro
cessors.html, 2024.

F. F. C. G. Giuseppe Amato, Fabio Carrara and C. Vairo, “Car parking
occupancy detection using smart camera networks and deep learning,”
in Proceedings of IEEE ISCC, 2016.

NS-3, “A discrete-event network simulator for internet systems, ns-3,”
2025. [Online]. Available: https://www.nsnam.org/

L. Wojciechowski, K. Opasiak, J. Latusek, M. Wereski, V. Morales,
T. Kim, and M. Hong, “Netmarks: Network metrics-aware kubernetes
scheduler powered by service mesh,” in Proceedings of IEEE INFO-
COM, 2021.

H. C. J. H. M. H. C. C. K. P. Yi Hu, Haonan Ding, “Collaborative
orchestration with probabilistic routing for dynamic service mesh in
clouds,” in Proceedings of IEEE INFOCOM, 2025.

J. Park, J. Park, Y. Jung, H. Lim, H. Yeo, and D. Han, “Topfull: An
adaptive top-down overload control for slo-oriented microservices,” in
Proceedings of ACM SIGCOMM, 2024.

N. Zheng, T. Qiao, X. Liu, and X. Jin, “MeshTest: End-to-End testing
for service mesh traffic management,” in Proceedings of USENIX NSDI,
2025.

F. Lu, X. Wei, Z. Huang, R. Chen, M. Wu, and H. Chen,
“Serialization/deserialization-free state transfer in serverless workflows,”
in Proceedings of ACM EuroSys, 2024.

N. Lazarev, S. Xiang, N. Adit, Z. Zhang, and C. Delimitrou, “Dagger:
efficient and fast rpcs in cloud microservices with near-memory recon-
figurable nics,” in Proceedings of ACM ASPLOS, 2021.

D. Saxena, W. Zhang, S. Pailoor, I. Dillig, and A. Akella, “Copper
and wire: Bridging expressiveness and performance for service mesh
policies,” in Proceedings of ACM ASPLOS, 2025.

S. Ashok, V. Harsh, B. Godfrey, R. Mittal, S. Parthasarathy, and
L. Shwartz, “Traceweaver: Distributed request tracing for microservices
without application modification,” in Proceedings of ACM SIGCOMM,
2024.

M. Scazzariello, T. Caiazzi, H. Ghasemirahni, T. Barbette, D. Kostié,
and M. Chiesa, “A High-Speed stateful packet processing approach for
tbps programmable switches,” in Proceedings of USENIX NSDI, 2023.
R. Miao, H. Zeng, C. Kim, J. Lee, and M. Yu, “Silkroad: Making
stateful layer-4 load balancing fast and cheap using switching asics,”
in Proceedings of ACM SIGCOMM, 2017.

D. Kim, J. Nelson, D. R. K. Ports, V. Sekar, and S. Seshan, “Redplane:
Enabling fault-tolerant stateful in-switch applications,” in Proceedings
of the ACM SIGCOMM, 2021.

C. Zeng, L. Luo, T. Zhang, Z. Wang, L. Li, W. Han, N. Chen, L. Wan,
L. Liu, Z. Ding, X. Geng, T. Feng, F. Ning, K. Chen, and C. Guo,
“Tiara: A scalable and efficient hardware acceleration architecture for
stateful layer-4 load balancing,” in Proc. of USENIX NSDI, 2022.

Y. Feng, Z. Chen, H. Song, Y. Zhang, H. Zhou, R. Sun, W. Dong, P. Lu,
S. Liu, C. Zhang, Y. Xu, and B. Liu, “Empower programmable pipeline
for advanced stateful packet processing,” in Proceedings of USENIX
NSDI, 2024.

