
Enabling Fast and Stable Service Mesh Communication via

Piggyback Layer-7 Traffic Control on Programmable Switches

Gonglong Chen1, Jiacong Li3, Yuxin Xu1,2, Baiyan Ke4, Zhitao Lan5, Wenxing Ge5,

Haiying Shen6, Jiamei Lv7, Tao Gu8, Chengzhong Xu9, and Kejiang Ye1∗
1Shenzhen Institutes of Advanced Technology, CAS, 2University of CAS, 3Northeastern University.

4Foshan University. 5Independent Researcher. 6University of Virginia. 7Zhejiang University.
8Macquarie University. 9University of Macau.

Email: {gl.chen2, yx.xu2 ,kj.ye}@siat.ac.cn, li.jiaco@northeastern.edu, {zhitaolan, vincentge95}@gmail.com,

baiyanke29@gmail.com, lvjm@zju.edu.cn, hs6ms@virginia.edu, czxu@um.edu.mo, tao.gu@mq.edu.au

Abstract—Service mesh has become an essential infrastructure
for managing cloud-native microservices, widely adopted by ma-
jor providers to streamline service orchestration and reduce oper-
ational overhead. A core component of service mesh architecture
is the sidecar proxy, managing policy-based routing, Layer-7 load
balancing, and related functions. Traditional per-pod distributed
sidecar deployments route all inter-pod communication through
local proxies, introducing substantial resource consumption and
inefficiencies. Recent approaches advocate for centralized proxy
deployments to offload compute-intensive modules to gateway
nodes; however, this design introduces non-trivial traffic detours
and exacerbates network congestion.

To overcome these limitations, we propose PiggyCar, a novel
service mesh communication system that piggybacks Layer-7
traffic control onto programmable network devices. In PiggyCar,
resource-intensive tasks are offloaded to intermediary switches
along inter-pod paths, enabling in-network execution of advanced
network functions. PiggyCar incorporates a latency-aware offline
planner for optimal network policy placement and a stability-
oriented online scheduler that dynamically adapts to traffic
fluctuations in real time. We prototype PiggyCar on a testbed
comprising six servers and four programmable switches. Exper-
imental results show that PiggyCar cuts latency by up to 97.2%
compared to Canal, boosts throughput by up to 1.82× under
high RPS conditions, and consistently delivers the lowest network
jitter.

I. INTRODUCTION

Service mesh is a critical infrastructure for cloud mi-

croservices, adopted by providers such as AWS [1], Azure

[2], GCP [3], and Alibaba [4] to streamline management

and reduce costs. Studies show that up to a 40% boost in

development speed and $40,000 in monthly savings [5], [6].

A key component in the service mesh frameworks like Istio

[7] and Linkerd [8] is the sidecar proxy, which handles policy-

based routing, Layer-7 (L7) load balancing, and A/B testing.

However, traditional per-pod distributed sidecar deployments

force all inter-pod communication through the proxy (as shown

in Fig. 1(a)), incurring over 30% CPU and 25% memory

overhead [9], [10], [11] and potentially doubling latency.

To mitigate the high resource consumption of traditional

per-pod sidecars, recent works propose centralized deploy-

ments such as Ambient Mesh [12] and Canal Mesh [9].

*Corresponding author.

These approaches offload resource-intensive modules from

individual pods. Ambient Mesh [12] uses a Layer-4 (L4)

proxy on each node and centralizes L7 processing. Canal

Mesh [9] shifts these modules to a public cloud to reduce

per-tenant resource usage. However, centralized deployments

force inter-pod traffic detouring even when pods reside on

the same node (as shown in Fig. 1(b)). This detouring causes

extra hops and increases bandwidth consumption. Intermediate

devices experience higher buffer occupancy. Our experiments

in Section II indicate that under DCTCP (a congestion control

algorithm widely adopted by major cloud vendors [13], [14]),

the congestion control mechanism is triggered earlier, which

leads to a nearly 53% drop in throughput.

To address the aforementioned issues, we propose Piggy-

Car, a piggyback service mesh communication system (as

shown in Fig. 1(c)). In PiggyCar, resource-intensive and time-

consuming modules are extracted and deployed on intermedi-

ary network devices along the inter-pod communication links.

Traffic between pods is processed by these devices, which

execute rich network functions such as L7 load balancing and

policy-based routing on the fly. Unlike existing distributed
approaches (e.g., Istio [7]) that burden user pods with heavy

resource consumption or centralized schemes (e.g., Canal [9])

that require detouring traffic to remote gateways for policy

parsing, PiggyCar integrates policy parsing directly into the

communication path. This piggyback approach minimizes pod

resource overhead and avoids detouring-induced throughput

loss, yielding a truly sidecar-transparent experience for appli-

cations.

However, achieving the above piggyback service mesh faces

the following challenges: Challenge 1: parsing complex
L7 policies on programmable switches under zero-trust
constraints. Implementing rich L7 network policies (e.g., load

balancing) on programmable switches is challenging. These

switches typically parse fixed-length headers (like IP and

port) and cannot directly handle variable-length, string-based

protocols (such as HTTP) due to the hardware limitations

[15]. Moreover, service mesh traffic is encrypted to support

zero-trust, so decryption is required before any L7 parsing. To

address this, we propose a decoupled L7 parsing approach. A

rule-based on-node proxy performs rapid, minimal-overhead

APP

A1 A2

C

APP APP

A1 A2

C

A3 A1 A2
C PiggyCar

PodNode A CAccess switch Core switch

(a) Distributed sidecar
(e.g., Istio).

(b) Centralized sidecar
(e.g., Canal, Ambient).

(c) Piggybacked sidecar
(ours).

APP APP APP

proxy proxySidecar
GW

Sidecar
Sidecar

Congestion!

ProxyProxy

Fig. 1: The comparison of existing works with PiggyCar.
(a) incurs significant resource overhead on each pod, while
(b) results in a many-to-one traffic pattern that doubles the
likelihood of congestion. In contrast, (c) offloads intensive
pod operations to intermediary network devices, thereby
enabling direct pod-to-pod communication to reduce la-
tency.

traffic classification and directly assigns a policy ID to the

outer VXLAN header. The programmable switch then relies

solely on the unencrypted outer header for policy matching

and traffic management, eliminating the need for heavy packet

inspection. This streamlined design minimizes resource usage

and simplifies implementation. On-the-fly matching reduces

on-node proxy overhead by over 90% (see Section III-C), and

periodic randomization of policy IDs further enhances security.

Challenge 2: optimally deploying network policies on
programmable switches. Determining which programmable

switch should host a network policy is non-trivial. Our goal

is to achieve in-path piggybacked policy parsing for any

pod pair to minimize end-to-end latency. However, selecting

the optimal switch maps to the NP-hard Capacitated Facility

Location Problem [16]. We design a heuristic algorithm to

efficiently identify switches on critical communication paths

(Section III-D). The algorithm leverages topology information

to reduce overall latency and avoid unnecessary detours. This

approach ensures rich network policies are deployed to provide

a minimal pod-to-pod communication latency.

Challenge 3: adapting to runtime traffic variations
for stable communications. Runtime traffic fluctuations may

cause the number of sessions associated with network policies

to exceed the SRAM capacity of programmable switches.

When this capacity is exceeded, sessions are forced to use

slower lookup paths (i.e., through switch CPU memory),

reducing overall throughput. To address this issue, we propose

a lightweight, distributed, stability-oriented online scheduler

(Section III-E). Programmable switches monitor their resource

utilization and exchange minimal state information with neigh-

boring switches. A heuristic algorithm quickly computes op-

timal migration strategies for both policies and sessions. The

algorithm balances the load and prevents resource overflow.

This dynamic adaptation minimizes the risk of reduced ap-

plication throughput and network jitter under varying traffic

conditions, thereby achieving stable communications.

We prototype PiggyCar on a testbed of six servers and four

programmable switches and simulate it on large-scale clusters.

Both experiments demonstrate that PiggyCar achieves low

latency and high stability (Section V). We evaluate PiggyCar

using a typical serverless scenario for car parking detection

and charging [10]. The results show that PiggyCar reduces

latency by up to 97.2% compared to Canal [9] and improves

throughput by 1.82× under high RPS. In addition, PiggyCar

consistently achieves the lowest network jitter and maintains

the highest proportion of flows with minimal flow completion

times.

This paper makes the following contributions:

• We analyze existing service mesh frameworks and iden-

tify key limitations. Some works use per-pod distributed
sidecars. These burden user pods with heavy resource

consumption. Other works use centralized sidecars. These

force traffic detours to remote gateways for policy pars-

ing. Neither design achieves fast and stable service mesh

communications under heavy traffic (Section II).

• We design PiggyCar, a piggyback service mesh commu-

nication system. In PiggyCar, resource-intensive modules

are extracted and deployed on intermediary network de-

vices along inter-pod communication links. These devices

process traffic on the fly, efficiently executing functions

such as L7 load balancing and policy-based routing

(Section III).

• We implement a PiggyCar prototype on a testbed of six

servers and four programmable switches. We evaluate it

using a typical serverless scenario. The experiments show

that PiggyCar significantly reduces latency and improves

stability compared to state-of-the-art solutions (Section

IV and Section V).

II. BACKGROUND AND MOTIVATIONS

In this section, we introduce the benefits of the service

mesh framework for modern cloud applications and its key

component, the sidecar. We then assess the limitations of both

the distributed per-pod and centralized sidecar approaches.

A. The Benefits of Service Mesh Framework

Service mesh is an infrastructure layer that orchestrates

service-to-service communication in cloud-native microser-

vice architectures [17], [18], [19], [20], [21]. Major cloud

providers, including AWS [1], Azure [2], GCP [3], and Al-

ibaba [4], offer service mesh-based products that simplify

development and reduce costs. Recent studies report that

service mesh frameworks can increase development speed by

up to 40% [5] and cut monthly costs by approximately $40,000

[6].

A key component in many service mesh frameworks, such

as Istio [7] and Linkerd [8], is the sidecar proxy. The sidecar

manages pod network traffic by performing tasks including

policy-based routing, load balancing, and rate limiting. For

example, to conduct an A/B test in a serverless application, one

may configure the routing rules as follows: Host: reviews.com,
route: v1(80%), v2(20%). This rule directs 80% of traffic

from POST requests with the host reviews.com to the v1

backend service, and 20% to the v2 service. The sidecar

applies these policies automatically, eliminating the need for

0
20
40
60
80

100

0 200 400 600 800 1000

CD
F

(%
)

Queue length(# of packts)

10kRPS
25kRPS
50kRPS

Trigger
Congestion

(a) Queue length@core switch.

0
50

100
150
200
250
300

10 20 30 40 50

TC
P

W
in

do
w

 S
ize

(#

 o
f

x1
0

M
SS

)

Request Rate(kRPS)

(b) TCP window size@Server 1.

Fig. 2: The throughput degradation in a centralized
sidecar setup due to the many-to-one traffic pattern.
On a 100Gbps server-access link, transmission rates ap-
proaching 47.8Gbps (nearly 25kRPS per server) trigger
congestion control at the core-access link, reducing average
application throughput by almost 53%.

modifications to the application logic and enabling flexible

traffic management.

B. The Problems of Traditional Sidecar

Traditional service mesh frameworks use a distributed side-

car deployment (e.g., Istio [7]). Each pod is paired with a

dedicated sidecar proxy that intercepts all traffic for fine-

grained control (see Fig. 1).

Problems. Although this approach decouples networking

from application logic, it consumes significant pod resources.

Sidecars have been shown to use over 30% of CPU and more

than 25% of memory [9]. This resource overhead limits the

capacity available for core application functions. Experimental

data indicates that when a pod’s CPU usage exceeds 45%,

inter-pod communication latency doubles, and when it exceeds

75%, latency can increase up to 100-fold [9].

C. The Issues of Recent Works

To address the high resource consumption and performance

overhead of per-pod sidecar deployments, recent research has

proposed centralized sidecar approaches, such as Ambient

Mesh [12] and Canal Mesh [9]. These approaches extract time-

consuming functions from per-pod sidecars and deploy them

in a single gateway, thereby reducing per-pod resource usage.

Ambient Mesh [12] deploys a node-level L4 proxy and

a shared L7 proxy (the centralized gateway) to cut pod

interference and local resource usage. However, retaining both

proxies within the user cluster may lead to resource contention

and limited isolation during peak workloads. In contrast,

Canal Mesh [9] offloads most sidecar functions from the user

cluster to a centralized mesh gateway in the public cloud.

This strategy further minimizes pod resource consumption and

achieves a balanced offloading approach.

Issues. Nonetheless, both approaches share a key drawback:

all pods, even those on the same node, must route traffic

through a remote centralized gateway (see Fig. 1(b)). This

extra hop increases data center traffic and raises the risk of

congestion and packet loss, leading to higher latency and

lower throughput. For example, compared with the distributed

Rule Scale
Estimations

Topology

Network
Status

Device
Status

Sidecar
Rules

Node
Programmable

Switch
Programmable

Switch Node

Latency-aware Offline Planner (Sec. III-D)

…… ……

Programmable Switch CPU

Centralized Controller

Stability-oriented Online Scheduler (Sec. III-E)

Fig. 3: The overview of PiggyCar.

sidecar in Fig. 1(a), the centralized approach adds 2× trans-

mission hops. This creates a many-to-one traffic pattern that

doubles the traffic volume on the link between access switch

A3 and core switch C. Existing studies [13], [14] show that

this doubling accelerates the triggering of congestion control.

Under DCTCP (a congestion control algorithm widely adopted

by major cloud vendors [13]), such conditions typically reduce

application throughput by nearly half.

Furthermore, we assessed the impact of network detours

on switch queues and throughput under various request rates.

Using the configuration from Section V, the Car Parking

detection scenario sends 1.9Mb of image recognition data per

request over 100Gbps inter-switch links, with requests evenly

distributed across five nodes. The congestion control threshold

is set at 359 packets according to DCTCP [13], [14]. Results

show that when the single server-access link reaches about

47.8Gbps (25kRPS per server), nearly 100Gbps of traffic is

generated at the core switch, quickly saturating the buffers

(as shown in Fig. 2). This surge triggers congestion control,

halving the TCP window and reducing application throughput

by up to 53%.

III. DESIGN

A. Key Idea and Overview

Key idea. To address the issues of the high resource con-

sumption and increased latency in distributed sidecar deploy-

ments (Fig. 1(a)) and the network detouring, queue buildup,

and severe throughput loss in centralized sidecar deployments

(Fig. 1(b)), we propose a piggybacked sidecar deployment

scheme, PiggyCar (Fig. 1(c)). PiggyCar maintains optimal

communication links between pods, avoiding detours that con-

tribute to congestion. It offloads time-consuming tasks, such as

L7 fine-grained traffic control, to programmable switches that

act as mandatory nodes along the optimal path. This strategy

significantly minimizes resource consumption on the pods.

Fig. 3 provides an overview of PiggyCar, which comprises

two modules: a latency-aware offline planner integrated with

A

A

A

A

C

C

TC_session_ table

Programmable Switches MB SRAM

Requester
Pods

Backend
Pods

e

PiggyCar

A
Access
Switch

Pod

sessions

C Core
Switch

function_offload_table

s

t

Fig. 4: The system model of service mesh architecture with
PiggyCar.

the Istio [7] controller, and a scalability-oriented online sched-

uler on programmable switches that promptly adapts to traffic

changes. Note that in this paper, our primary focus is on

efficiently implementing the key traffic control functionality

of sidecars on programmable switches. For the other two

functions, namely zero-trust security and observability, we

adopt an approach similar to Canal [9]: A dedicated key

server generates asymmetric keys to reduce pod overhead,

and observability is shifted from L7 to L4 to lower resource

consumption while preserving essential monitoring.

The latency-aware offline planner computes optimal rule

assignments for programmable switches. It takes system status

(e.g., network topology and etc) and user-provided service

mesh information (e.g., the estimated concurrent user count

for each rule) as input. When deploying these rules, the

planner considers on-chip SRAM limitations and prevents

rule placements from forcing network detours between pods.

Since this problem reduces to the NP-hard capacitated facility

location problem [16], we employ a heuristic algorithm to find

a near-optimal solution.

The stability-oriented online scheduler dynamically ad-

justs rule deployments when actual concurrency exceeds esti-

mates. It makes minimal-overhead adjustments to maintain low

latency while scaling to more users. This module uses switch

session statistics, traffic measurements, and lightweight link

data to determine a cost-effective configuration that minimizes

delay.

B. System Model and Basic Notations

Fig. 4 shows the system model of service mesh architec-

ture with PiggyCar, which forms a typical CLOS topology

[22], [23] denoted by G = (N,E). Where N comprises pro-

grammable switches and pods, and E represents the links.

Each pod initially connects to an access switch that, in turn,

connects to core switches, with no direct links between access

switches or among core switches; this design follows standard

industry practices [22], [23]. Each programmable switch ni
has a maximum SRAM capacity Mni and a current usage mni .

Given a set of rules R with an estimated session scale xr
per rule, each switch is allocated x(ni) = ∑r∈R z(ni,r)xr rule

Node

On-node proxy

Pod
GET / HTTP/1.1
Host: app1; end-user: json

①App Traffic

service_mapping_table
Key Action

host=app1
end-user=json vxid=id1

host=app1 vxid=id2

②Traffic Classification

function_offload_table

TC_session
_ table

Key Action
vxid=id1 out_dip=

Programmable Switches

Traffic Control Rule Management

Switch ASIC
Switch CPU

vxid=id2 out_dip= Y

N

miss update
session

hit

full_rule_table
Key Action

vxid=id1
Rule_type=LB,

Method=Random,
Backend_list= [,]

dip=piggycar_IP sip=Pod_IP vxlan_id=id1
Enc[App Traffic]

pkt

③Rule Offload Determination

④ Session Generation

Function_offload
_table

Fig. 5: The decoupled L7 traffic control.

sessions, z(ni,r) is a binary variable indicating whether rule r
is allocated to switch ni. The function offload table then maps

the VXLAN ID id to the appropriate switch IP based on this

allocation (as we detailed in Section III-C).

For any two nodes (e.g., node s and node t) in the topology,

the communication path p(s, t) is derived using the underlay

BGP protocol by appending the AS PATH field to the routing

information. Each pair of neighboring nodes establishes an

eBGP relationship, so each node receives an AS PATH ID

that is visible at every hop during route exchange. This

mechanism enables precise link information between nodes.

We assume that when deploying a service mesh application,

the requester pod group Q(r) and the backend pod group K(r)
for each sidecar rule r can be identified. The communication

relationship between these groups is obtained via orchestration

logic similar to a service mesh workflow [24].

C. Decoupled L7 Traffic Control

Implementing advanced L7 traffic control (e.g., load balanc-

ing) on programmable switches is challenging. These devices

are designed for fixed-length headers (e.g., IP/port) and cannot

process variable-length, string-based protocols like HTTP due

to hardware constraints [15]. Additionally, zero-trust security

encrypts service mesh traffic, requiring decryption before

any L7 parsing. This decryption process poses implemen-

tation challenges (e.g., matrix multiplication) on resource-

constrained switches. To address the above challenges, we

propose a decoupled L7 traffic control approach. The on-

node proxy performs lightweight, rule-based L7 traffic classi-

fication, while programmable switches handle high-throughput

traffic control.

Lightweight on-node proxy. Specifically, as shown in

Fig. 5, the on-node proxy implements the table ser-

vice mapping table. This table quickly matches key fields

(e.g., host and end-user) in L7 traffic against user-specified

sidecar rules and allocates an associated service ID, id1 (steps

� and �). Then, the VXLAN ID in the outer header is

TABLE I: Input parameters of offline planner.
Variable Name Symbol
Network topology G = 〈N,E〉
Set of devices (pods and

programmable switches) N
Set of Ethernet links E
Set of core switches C

Maximum bandwidth capacity

per link (Gbps) Bmax(e), where e ∈ E
Maximum SRAM capacity of

programmable switches (MB) Mni , where ni ∈ N
Current utilized SRAM of

programmable switches (MB) mni , where ni ∈ N
Communication path set P = {p(s, t)}, for (s, t) ∈ N
Individual communication path

(set of programmable switches) p(s, t) = {ni}
Load-balancing (LB) rule set R
Scale (count) of the rule xr , for r ∈ R
Traffic volume (Gbps) of the rule yr , for r ∈ R
Source pod s, where s ∈ N
Destination pod t, where t ∈ N
Requester pod group for a rule Q(r)
Backend pod group for a rule K(r)
Communication pod group pair set C(r) = 〈Q(r),K(r)〉
Basic link latency Tbase(e)

replaced with id1, which enables the programmable switch to

perform traffic control based solely on this identifier.

Compared with traditional Envoy [25] (serving as the data

plane of Istio [7]) that performs complete traffic control on

the pod, our lightweight on-node proxy offers two major

enhancements. First, it employs a concurrent parsing and

matching strategy instead of waiting for the complete HTTP

tree to be constructed, which reduces node-side processing la-

tency by approximately 10.5%. Second, it offloads bandwidth-

intensive tasks, such as load balancing, to the programmable

switch, thereby further reducing node-side processing delays

by approximately 77.2% (Section V-A).

Scalable programmable switch boosted traffic con-
trol. As shown in Fig. 5, there are two tables, func-

tion offload table and full rule table, allocated in the data

plane and the control plane of the programmable switches.

The function offload table is used to determine which switch

should process the received packet and updates the outer

destination IP with the matched IP (step �). If the matched

IP is local, TC session table (traffic control session table) is

enabled to match. Otherwise, the packet is forwarded to the

designated switch. When a session match is found, the tunnel’s

destination IP is updated to the backend service pod’s IP. If

no session match is found, the packet is sent to the switch

CPU where the full rule table is used to identify the proper

traffic control rule (step �). Based on this rule, an appropriate

backend service pod’s IP is selected, and the session table in

the switch’s ASIC data plane is updated accordingly.

D. Latency-aware Offline Planer

In this subsection, we provide a detailed description of how

to model the aforementioned fast service mesh communica-

tions based on the system model introduced earlier.

Algorithm 1: Latency-aware offline planner.

Input : Parameters in Table I.
Output: z(ni,r).

1 /*Define high-priority set Shigh as the core and aggregation
switches directly connected to all pods in Q(r) and K(r) */;

2 Slow ← N \Shigh;
3 foreach r ∈ R do
4 Scand ← Shigh �= /0?Shigh : Slow;
5 foreach ni ∈ Scand do
6 Tni ←estimate latency(Q(r), K(r), ni);
7 Tall .append(Tni);

8 Find the best nbest
i with minimal latency from Tall ;

9 z(nbest
i ,r)← 1;

10 Update Shigh or Slow where switches exceed Mni ;

11 Perform simulated annealing to avoid local optima;
12 procedure estimate latency(Q(r), K(r), ni)
13 Find the maximum latency T m

lb from Q(r) to ni;
14 Find the maximum latency T m

svc from ni to K(r);
15 return T m

lb +T m
svc;

1) Metrics Modeling: The optimization goal is to de-

termine the optimal rule assignments z(ni,r) that minimize

the maximum communication latency between any pod pairs

C in the service mesh clusters. Let T denote the max-

imum latency among all pod group pairs C, defined as

T =maxr∈R,s∈Q(r), t∈K(r) T (r,s, t), where T (r,s, t) is the latency

between the requesting pod s and the backend service pod t
when the traffic control rule r is applied.

min T (1)

The communication latency between any two pods can be

decomposed into two parts: the latency TLB(r,s, t) from the

requesting pod s to the switch that processes rule r, and the

latency TSVC(r,s, t) from that switch to the backend service

pod t. Then the latency can be computed as follows:

T (r,s, t) = TLB(r,s, t)+TSVC(r,s, t) (2)

Given the forwarding delay F(e,r) for the link e and the as-

sociated r, we can infer that TLB(r,s, t) = ∑e∈p(s,ni) F(e,r),and

TSVC(r,s, t) = ∑e∈p(ni,t) F(e,r).

F(e,r) =
Tbase(e)

1−ρ(e,r)
(3)

Where Tbase(e) denotes the basic RTT latency for the link

e under rule r when there is no congestion. It can be ob-

tained offline and remains relatively stable. The parameter

ρ(e,r) represents the bandwidth utilization ratio for the link

e under rule r, and the latency of link e is inferred as

ρ(e,r) = ∑r∈R(e)
yr

Bmax(e)
based on the M/M/1 queuing model

[26]. Here, R(e) denotes the set of rules that traverse link

e, which is expressed as R(e) = {r | e ∈ E(r)}. The set

E(r) denotes the edges traversed by rule r and is derived as

E(r) =
⋃

s∈Q(r), t∈K(r){p(s,ni)∪ p(ni, t)}, for all ni such that

z(ni,r) = 1.

2) Solving the Problem: The above modeled rule assign-

ment problem that involves in considering the communication

latency (i.e., the cost of transmission) of pod pair and the

SRAM constraints of each switch (i.e., the capacity of facility)

on the road, can be reduced to the typical NP-hard problem

Capacitated Facility Location Problem [16].

Therefore, we propose a heuristic algorithm to solve it. As

shown in Algorithm 1, the overall algorithm comprises three

steps. 1) Switch prioritization. We prioritize the set of candi-

date switches for deployment. Switches that are more likely to

reduce the inter-pod communication latency are given higher

priority. If these high-priority switches cannot accommodate

all the rules, the remaining switches are considered. The high-

priority set includes the core switches and the aggregation

switches that are directly connected to every pod in the

pod group (lines 1 to 2). 2) Maximum latency calculation
simplification. For both high-priority and low-priority switch

sets, the latency between each pair of pods is simplified to the

sum of the maximum delays from two segments: the delay

between the requester pod s and the deployed switch ni, and

the delay from that switch ni to the backend service pod t
(lines 12 to 15). This approximation reduces the computational

complexity from O(k n2) to O(2k n), where k represents the

number of candidate switches, and n denotes the number of

initiating and backend pods (assumed to be of similar scale).

3) Simulated annealing. To avoid local optima, we employ a

simulated annealing algorithm that randomly exchanges rules

among the switches until either the desired latency reduction

is achieved or a predetermined number of iterations is reached

(line 11).

E. Stability-oriented Online Scheduler

Although the offline planner produces near-optimal rule

assignments, the actual session count may deviate from es-

timates. Indeed, application providers struggle to accurately

predict both the number of users and the generated traffic

volume [27].

Therefore, we propose a stability-oriented online adaptation

approach that runs on each switch. This method designs a

lightweight rule migration scheme by accounting for devia-

tions between observed values and the estimated session scale.

It prevents input estimation errors from exceeding the switch’s

resource capacity, which would otherwise lead to unstable

transmissions.

Trigger conditions. When the current programmable switch

ncur detects that the difference between observed values and

the estimated session scale exceeds the predefined threshold

ΔX , or that the utilized SRAM mncur is approaching the thresh-

old TSRAM (with TSRAM set slightly below the maximum SRAM

Mncur to preempt overflow), the rule migration optimization

algorithm is triggered. The trigger conditions are shown below:

δx(ncur)> ΔX or (mncur > TSRAM) . (4)

δx(ncur) denotes the sum of differences between the ob-

served session amount and the estimated session scale for

all rules assigned to switch ncur. It is defined as δx(ncur) =

∑r∈R z(ncur,r)[xob
r −xr]. Here, xob

r is the observed session count

for rule r.

1) Application Level Metrics: The goal of finding the best

migration strategy is defined as follows:

min I = α ·Emig +β ·Ereroute

subject to δxnew(ni)≤ ΔX

mni ≤ TSRAM

(5)

Where Emig denotes the migration overhead and consists of

two parts, the session migration latency and the rule migration

latency. Ereroute denotes the potential reroute overhead when

applying a new rule assignment to the switches. δxnew(ni) de-

notes the updated differences of the observed session scale and

the expectations for all switches of PiggyCar, after applying

the above new rule assignment strategy znew(ni,r). α and β
are two adjustable parameters that balance the importance of

the two overhead (In our experiments, we set α = 0.5 and

β = 0.5).

2) Metrics Modeling: Constraints estimation. For the

constraint δxnew(ni) of all switches in PiggyCar, we derive

using the formula δxnew(ni) = δx(ni)+∑r∈R Δz(ni,r)[xob
r −xr],

where δx(ni) denotes the difference (actual minus estimated)

for all rules on switch ni prior to migration, and Δz(ni,r) =
znew(ni,r)−z(ni,r) captures the change in rule assignment. For

example, if rule r migrates from n j to n j+1, then Δz(n j,r) =
−1 and Δz(n j+1,r)=+1; for any other switch ni, Δz(ni,r)= 0.

The session difference [xob
r −xr] for a migrating rule r remains

unchanged and can be obtained from ncur.

Thus, each switch in PiggyCar holds two types of rules:

those selected by ncur for migration and those that are not.

For non-migrating rules, the assignment remains unchanged

(i.e., Δz(ni,r) = 0), so no additional session difference value

is required. For migrating rules, Δz(ni,r) is provided by the

online scheduler algorithm, while the session difference is

observed at ncur. Consequently, to infer δxnew(ni), each switch

only needs to send a single data value representing the session

difference for all its rules before performing the rule migration,

i.e., δx(ni). While the current SRAM utilization mni is also

directly collected from other switches on ncur.

Migration overhead Emig. The migration overhead is de-

termined by the slower of two operations, i.e., the session

migration latency and the rule migration latency, expressed

as:

Emig = max{wu,ws} (6)

The rule migration is given by wu = maxnd∈N δnd (Du), and

the session migration latency is ws = maxnd∈Ne δnd (Ds),
with δnd (D) = ∑e∈P(ncur ,nd)

D
B(e) . B(e) denotes the rest of the

bandwidth for the link e.

The data sizes are defined as Du = u · len(R f ull
Δ) and Ds =

∑r∈Re
Δ

s · xob
r . Here, u is the number of bytes for each rule in

the table function offload table, and s is the number of bytes

for each session in the table TC session table. R f ull
Δ = {r ∈ R |

δx(ncur,r)> 0} denotes the set of rules whose session counts

exceed the expectation, δx(ncur,r) represents the difference

between the observed and expected session scales. Note that

all observation data is obtained solely from the current switch

ncur, eliminating the need for additional data collection from

other switches.

Reroute overhead Ereroute. We infer the maximum commu-

nication latency after rule migration as

Ereroute = max
r∈R,s∈Q(r),t∈K(r)

T new(r,s, t) (7)

Where each rule’s new latency is given by T new(r,s, t) =
T (r,s, t) + ΔT (r,s, t). Here, T (r,s, t) is the initial latency

distributed during offline planning, and ΔT (r,s, t) represents

the additional delay incurred after migration. In particu-

lar, ΔT (r,s, t) is decomposed as ΔT (r,s, t) = ΔTLB(r,s, t) +
ΔTSVC(r,s, t), with the key update based on the difference

between the actual delay observed on each switch edge and

the estimated delay, denoted by ΔF(e,r). Specifically, for each

rule r, the bandwidth utilization ratio change on link e is

calculated as ρ ′(e,r) =
∑r∈R′(e)(yob

r −yr)
Bmax(e)

, where R′(e) denotes

the set of rules that traverse link e after rule migration.

Broadcasting variation metrics for all rules incurs high

overhead. To optimize, we focus on reroute latency Ereroute.

Since prior work [28] indicates only 26% of applications

involve large transfers (>1GB) that dominate delay, we limit

synchronization to the top-k rules (Rk, e.g., k=20%). The

latency for the remaining rules is updated using a constant

ΔT c, significantly reducing network traffic.

3) Solving the Problem Online: When the trigger for online

rule scheduling is met, we propose the following heuristic

algorithm to improve the solving speed. 1) Candidate switch
selection: select the top-U switches Scandi with the highest re-

maining SRAM, ensuring that their combined SRAM exceeds

the migration requirement. 2) Rule deployment decision: as

shown in Algorithm 2, the core idea is as follows: for rules

outside Rk, the detour overhead Ereroute is negligible, so we

only consider the migration overhead Emig (lines 7 to 8).

Moreover, if the candidate switch has a different role than

the current one, a one-hop transmission makes the migration

overhead negligible (lines 3 to 4). For rules in Rk, if the

candidate’s role differs, deployment is allowed provided the

detour delay does not increase (lines 5 to 6); otherwise, the

candidate with the smallest overall metric I is chosen (lines 9

to 12).

IV. IMPLEMENTATION

We prototyped PiggyCar using a centralized scheduler and

agents on both servers and switches to coordinate service

mesh rule assignments and enforce online rule adaptation. Our

implementation comprises over 4.5K lines of Python code for

the switch control plane, more than 350 lines of P4 code for

the programmable switch data plane, 3.4K+ lines of Python

code running on the controller server, and over 2K lines of

C++ code on the servers.

Central scheduler. It is implemented as a Python appli-

cation that periodically aggregates static topology data (e.g.,

server configurations and switch capacities) and dynamic net-

work metrics. When deploying new serverless applications, the

Algorithm 2: Stability-oriented online planner.

Input : mni , ΔFk(e,r).
Output: znew(ni,r).

1 foreach r ∈ R f ull
Δ do

2 foreach ni ∈ Scand do
3 if r /∈ Rk and Role diff(ncur, ni) then
4 znew(ni,r)← 1; break;

5 else if r ∈ Rk and Role diff(ncur, ni) and
T new(r,s, t)≤ T (r,s, t)) then

6 znew(ni,r)← 1; break;

7 else if r /∈ Rk and not Role diff(ncur, ni) then
8 Im.append(Emig(ni,mni));

9 else
10 Ia.append(I(ni,mni ,ΔFk(e,r)));

11 if znew(,r) not set then
12 Find ni with minimal Im or Ia, znew(ni,r)← 1;

scheduler optimizes and disseminates computed rule assign-

ments and service mappings to programmable switch agents

via high-speed gRPC.

From user-specified Istio rule configuration files, we ex-

tract only the matching field information. This extracted data

is distributed to all on-node proxies to update their ser-

vice mapping table entries, reducing the transmission volume

by nearly 91%. Meanwhile, the complete configuration is

sent solely to a limited number of programmable switches,

significantly lowering the deployment overhead.

On-node proxy. It performs lightweight traffic matching.

Based on the classification results, it leverages eBPF to en-

capsulate packets within a VXLAN tunnel and updates the

VXLAN ID to the service identifier corresponding to the

targeted service mesh service.

Programmable switch. 1) Data plane: It contains two core

tables, i.e., fuction offload table and session table. They are

all implemented as exact-match table. We leverage the switch’s

built-in aging mechanism to automatically purge stale entries.

This approach prevents long-inactive flows from occupying

valuable SRAM resources, thereby ensuring that memory is

effectively allocated to active traffic and maintaining overall

system efficiency. 2) Control plane. In addition to generating

sessions to the switch data plane according to the stored

service mesh rules, the control plane retrieves real-time fast-

path session capacity data from the switch data plane to

facilitate runtime rule migration and optimization strategies.

V. EVALUATION

We evaluate PiggyCar using a combination of small-scale

testbed experiments and large-scale simulations, and we com-

pare its performance against two of the most relevant existing

solutions, namely, Istio [7] and Canal [9].

Testbed deployment. As illustrated in Fig. 6, the testbed

includes six servers and four programmable switches equipped

with a Tofino ASIC [29]. One switch acts as the Core, while

the other three serve as Access switches. Two Access switches

each connect two servers via two 100Gbps links, the third

S1 Canal

100Gbps *1 Controller

Access1 Access2 Access3

Core

Nodes

S2 S3 S4

Fig. 6: Testbed.

one connects to Canal gateway [9]. Among the servers (each

with a 96-core AMD CPU, a 100Gbps NIC, and 500GB

of memory, 95Gbps+ AES encryption/decryption capability),

four host service mesh nodes, one serves as the Canal gateway

[9], and one runs the central scheduler as the controller.

Workload setup. We deploy a typical serverless scenario,

i.e., car parking detection and charging [10], to examine the

improvements of PiggyCar. This scenario uses parking spot

snapshots to detect occupancy, extract and store vehicle license

plate metadata if needed, and charge parking fees accordingly

[10]. We use the CNRPark+EXT image dataset [30], every

240 seconds, 164 snapshots (350KB each) are sent to the

function chain, resulting in a nearly 1.91Mbps data rate for

each request. We vary the request from 10k request per

seconds (RPS) to examine the performance benefits obtained

by PiggyCar. The workload is generated evenly from all of

the above five service mesh nodes. We retrieved sample traffic

control rules from the Istio project [7] to generate 1,000

distinct rules for the car parking application and allocated

concurrent accesses in a 2:8 ratio based on the RPS settings,

thereby simulating a data center scenario where a small subset

of flows consumes most of the traffic [28].

Simulation settings. We perform simulations on a physical

server equipped with an Intel Core i9-9900K processor and

an NVIDIA GeForce RTX 2080 Ti GPU. We utilize a high

fielity network simulator NS-3 [31] to perform the large scale

simulation. We simulate ten thousand programmable switches

connecting ninety thousand servers and deployed one hundred

thousand rules to validate PiggyCar’s performance in large-

scale scenarios.

Results reveal that:

• PiggyCar achieves the lowest latency: it reduces latency

by up to 98.7% and 97.2% relative to Istio [7] and Canal

[9] under high RPS, respectively.

• PiggyCar achieves highest throughput, it significantly

improves the throughput by 15.1× and 1.82× compared

to [7] and Canal [9].

• PiggyCar consistently produces stale network transmis-

sions exhibiting the lowest network jitter and maintains

the highest proportion of flows with minimal flow com-

pletion times.

A. Testbed Experiments

Latency. Fig. 7 compares latency performance at various

kRPS in the testbed environment. At nearly 90kRPS, PiggyCar

reduces latency by up to 98.7% and 97.2% relative to Istio

[7] and Canal [9], respectively. This improvement is due

0 20 40 60 80 100

P9
9

La
te

nc
y

(m
s)

kRPS

Istio Canal PiggyCar
105

104

103

102

101

100

Fig. 7: [Testbed] P99 latency.

0
20
40
60
80

100
120
140
160
180
200

10 20 30 50 70 80 100 110

Ag
gr

eg
at

ed
 T

hr
ou

gh
pu

t (
Gb

ps
)

kRPS

Istio

Canal

PiggyCar

Fig. 8: [Testbed] Aggregated
throughput.

0 20 40 60 80 100

Ne
tw

or
k

Jit
te

r (
m

s)

kRPS

Istio Canal PiggyCar
105

104

103

102

101

100

Fig. 9: [Testbed] Jitter.

0

20

40

60

80

100

0 20 40 60 80 100

CD
F

(%
)

FCT (ms)

Istio

Canal

PiggyCar

Fig. 10: [Testbed] Flow com-
pletion time.

to PiggyCar’s efficient piggyback execution of service mesh

policies, which prevents detour transmission among pods. We

also conduct experiments to demonstrate that reducing HTTP

tree analysis and eliminating complex load balancing can

lower the average on-node latency from 764μs to 94μs, an

87.1% reduction.

In contrast, Canal [9] suffers from centralized gateway

issues. At nearly 60k RPS, core-to-access3 traffic nears

100Gbps, even though access-to-server links average 50Gbps

(50% utilization). This heavy load pushes core buffers to their

limit, triggering ECN marking under DCTCP and causing

the application layer to reduce its sending rate, which in

turn increases request latency. Furthermore, Istio [7] shows

increased CPU utilization at around 10kRPS due to its per-

pod implementation, leading to higher per-packet processing

delays.

Throughput. Fig. 8 presents aggregated throughput perfor-

mance at varying request rates. Throughput was calculated

by aggregating the processed requests across all pods. Ex-

perimental results show that at nearly 100kRPS, PiggyCar

achieves improvements of up to 15.1× and 1.82× compared

to the Istio [7] and Canal [9], respectively. This enhancement

is attributed to PiggyCar’s ability to avoid traffic detours and

reduce redundant network transmissions, thereby lowering the

probability of network congestion.

Jitter. Fig. 9 presents the average network jitter performance

under various request rates, where jitter is defined as the

absolute difference between the per-flow delay measurements

and the average delay. The experimental results indicate that

PiggyCar reduces network jitter by 98.9% and 97.9% com-

pared to Istio [7] and Canal [9] at nearly 100kRPS, respec-

Fig. 11: [Simulation] The session scale and p99 latency
when running online adaptation (40kRPS).

tively. When the RPS reaches around 10k, Istio [7] experiences

significant jitter due to pod CPU exhaustion, which prevents

packet forwarding. As for Canal [9], approaching 60kRPS trig-

gers network congestion control, causing persistent and large

fluctuations through continuous adjustments of the TCP trans-

mission window. In contrast, PiggyCar significantly minimizes

redundant network traffic and maintains stable performance

even at high RPS.

Flow completion time. Fig. 10 presents the results for flow

completion time (FCT). We tested three approaches, PiggyCar,

Istio [7], and Canal [9], across 65 scenarios with request rates

ranging from 1k to 110k RPS, with each scenario running for

one minute. The FCT from all scenarios was aggregated into

a distribution plot. Results indicate that PiggyCar increases

the probability of achieving lower flow completion times by

6× and 1.9× compared to Istio [7] and Canal [9], respectively.

Moreover, PiggyCar maintained flow completion times around

22ms in over 90% of cases, whereas Istio and Canal achieved

such low delays in only approximately 15% and 46.1% of

cases, respectively.

B. Simulation Experiments

Fig. 11 illustrates the changes in fast-path session specifica-

tions across several key switches, as well as the network-wide

p99 latency, in a simulated environment running the runtime

adaptive session migration algorithm. Results show that our

proposed algorithm can promptly detect deviations from ex-

pected session scales and quickly adjust session migrations

to maintain stable p99 latency. Specifically, at approximately

500ms, a surge in sessions occurred on the Core1 switch,

persisting for 200ms. This anomaly was detected at 700ms,

at which point the optimal migration plan was computed

and executed: rules contributing to high p99 latency were

migrated to the Core2 switch (which had greater remaining

SRAM capacity and shorter reroute latency), while a few low-

latency rules were transferred to the Access1 switch. As a

result, the overall network p99 latency increased by only 1ms.

Subsequently, similar session surges at 2000ms and 3400ms

on the Core1 and Core2 switches were also promptly mitigated

through timely session and rule migrations, ensuring that p99

latency remained consistently low.

VI. RELATED WORK

Performance optimizations for service mesh frame-
works. Existing efforts optimize service mesh by offload-

ing functions to gateways [9], leveraging eBPF and shared

memory [10], or enhancing scheduling and routing strategies

[32], [33], [34], [35]. Others focus on hardware acceleration

or architectural simplification [36], [37], [38], [39]. However,

most approaches still rely on external gateways, per-pod

proxies, or specialized hardware. In contrast, PiggyCar inte-

grates sidecar functionality directly onto intermediary switches

using piggyback parsing. This design eliminates the need for

extra gateways or proxies, significantly conserving user pod

resources.

Traffic control on programmable switches. Prior works

utilize programmable switches for L7 [15], [40] or L4 [41],

[42], [43], [44] load balancing. These solutions typically

adopt a centralized switch cluster design, which overlooks

the potential of switches as direct interconnects, leading to

traffic detours and congestion. PiggyCar addresses this by

employing a piggyback-style traffic control mechanism that

maintains optimal communication paths between pod pairs,

thereby reducing latency and avoiding redundant traffic.

VII. CONCLUSION AND FUTURE WORKS

This paper introduces PiggyCar, a piggyback service mesh

communication system. In PiggyCar, resource-intensive and

time-consuming modules are offloaded to intermediary net-

work devices along inter-pod links, enabling on-the-fly execu-

tion of rich network functions such as Layer-7 load balancing.

PiggyCar employs a latency-aware offline planner for network

policy placement and a stability-oriented online scheduler to

promptly adapt to runtime traffic fluctuations. We prototype

PiggyCar on a testbed of six servers and four programmable

switches. Experimental results show that PiggyCar reduces

latency by up to 97.2% compared to the state-of-the-art

Canal and improves throughput by 1.82× under high RPS

(requests per second), while consistently achieving the lowest

network jitter and the highest proportion of flows with minimal

completion times.

In the future, there are several avenues to explore. First, we

plan to enhance L7 observability on programmable switches

to improve debugging and operational transparency. Second,

we will implement encryption and decryption functions on

programmable switches for deep payload parsing, thereby

providing richer application-layer insights.

ACKNOWLEDGMENT

This work is supported by the National Key R&D Program

of China (No. 2025YFE0204100), Science and Technology

Development Fund of Macao S.A.R (FDCT) under number

0074/2025/AMJ, the National Natural Science Foundation of

China (No. 92267105), Guangdong Basic and Applied Basic

Research Foundation (No. 2023B1515130002), Key Research

and Development and Technology Transfer Program of Inner

Mongolia Autonomous Region (2025YFHH0110), Shenzhen

Basic Research Program (No. JCYJ20250604183035046, No.

JCYJ20220818101610023, No. KJZD20230923113800001),

Ningbo Yongjiang Talent Project, U.S. NSF grants NSF-

2421782, NSF-2350425, NSF-2319988, NSF-2206522, Mi-

crosoft Research Faculty Fellowship 8300751, Amazon re-

search award.

REFERENCES

[1] AWS, “Aws app mesh,” 2024. [Online]. Available: https://aws.amazon
.com/app-mesh/

[2] Azure, “Azure service fabric,” 2024. [Online]. Available: https:
//azure.microsoft.com/en-us/products/service-fabric

[3] Google, “Google cloud service mesh,” 2024. [Online]. Available:
https://cloud.google.com/products/service-mesh

[4] Alibaba, “Alibaba cloud service mesh,” 2024. [Online]. Available:
https://www.alibabacloud.com/en/product/servicemesh

[5] R. Duke, “How cloud-native architectures enable faster product
releases in high-change environments,” 2025. [Online]. Available: https:
//medium.com/@richarddukeusa/how-cloud-native-architectures-enabl
e-faster-product-releases-in-high-change-environments-dff0f3229e51

[6] Flynn, “How service mesh can reduce the cost of running modern
applications,” 2022. [Online]. Available: https://www.spiceworks.com/t
ech/networking/guest-article/how-service-mesh-can-reduce-the-cost-o
f-running-modern-applications/

[7] Istio, “Istio: simplify observability, traffic management, security, and
policy with the leading service mesh,” 2025. [Online]. Available:
https://istio.io

[8] Linkerd, “Linkerd: the world’s most advanced service mesh,” 2025.
[Online]. Available: https://linkerd.io/

[9] E. Song, Y. Song, C. Lu, T. Pan, S. Zhang, J. Lu, J. Zhao, X. Wang,
X. Wu, M. Gao, Z. Li, Z. Fang, B. Lyu, P. Zhang, R. Wen, L. Yi,
Z. Zong, and S. Zhu, “Canal mesh: A cloud-scale sidecar-free multi-
tenant service mesh architecture,” in Proceedings of ACM SIGCOMM,
2024.

[10] S. Qi, L. Monis, Z. Zeng, I.-c. Wang, and K. K. Ramakrishnan, “Spright:
extracting the server from serverless computing! high-performance ebpf-
based event-driven, shared-memory processing,” in Proceedings of ACM
SIGCOMM, 2022.

[11] Q. Chen, J. Qian, Y. Che, Z. Lin, J. Wang, J. Zhou, L. Song, Y. Liang,
J. Wu, W. Zheng, W. Liu, L. Li, F. Liu, and K. Tan, “Yuanrong: A
production general-purpose serverless system for distributed applications
in the cloud,” in Proceedings of ACM SIGCOMM, 2024.

[12] Istio, “What is istio ambient mode,” 2025. [Online]. Available:
https://www.solo.io/topics/ambient/ambient-mode

[13] A. Dhamija, B. Madhavan, H. Li, J. Meng, S. Khare, M. Rao, L. Brakmo,
N. Spring, P. Kannan, S. Sundaresan, and S. Ghorbani, “A large-scale
deployment of dctcp: operational systems track,” in Proceedings of
USENIX NSDI, 2024.

[14] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prab-
hakar, S. Sengupta, and M. Sridharan, “Data center tcp (dctcp),” in
Proceedings of the ACM SIGCOMM, 2010.

[15] X. Shi, L. He, J. Zhou, Y. Yang, and Y. Liu, “Miresga: Accelerating
layer-7 load balancing with programmable switches,” in Proceedings of
ACM WWW, 2025.

[16] P. B. Mirchandani and R. L. Francis, Discrete Location Theory. Wiley,
1990. [Online]. Available: https://search.worldcat.org/title/19810449?o
clcNum=19810449

[17] G. Antichi and G. Rétvári, “Full-stack sdn: The next big challenge?” in
Proceedings of ACM SOSR, 2020.

[18] S. Ashok, P. B. Godfrey, and R. Mittal, “Leveraging service meshes as
a new network layer,” in Proceedings of ACM HotNets, 2021.

[19] J. a. T. Duarte Maia and F. Figueiredo Correia, “Service mesh patterns,”
in Proceedings of EuroPLop, 2023.

[20] M. Klein, “Lyft’s envoy: Experiences operating a large service mesh,”
2017. [Online]. Available: https://www.usenix.org/conference/srecon17
americas/program/presentation/klein

[21] X. Zhu, W. Deng, B. Liu, J. Chen, Y. Wu, T. Anderson, A. Krishna-
murthy, R. Mahajan, and D. Zhuo, “Application defined networks,” in
Proceedings of ACM HotNets, 2023.

[22] K. Qian, Y. Xi, J. Cao, J. Gao, Y. Xu, Y. Guan, B. Fu, X. Shi, F. Zhu,
R. Miao, C. Wang, P. Wang, P. Zhang, X. Zeng, E. Ruan, Z. Yao, E. Zhai,
and D. Cai, “Alibaba hpn: A data center network for large language
model training,” in Proceedings of the ACM SIGCOMM, 2024.

[23] A. Gangidi, R. Miao, S. Zheng, S. J. Bondu, G. Goes, H. Morsy,
R. Puri, M. Riftadi, A. J. Shetty, J. Yang, S. Zhang, M. J. Fernandez,
S. Gandham, and H. Zeng, “Rdma over ethernet for distributed training
at meta scale,” in Proceedings of the ACM SIGCOMM, 2024.

[24] Z. Li, Y. Liu, L. Guo, Q. Chen, J. Cheng, W. Zheng, and M. Guo, “Faas-
flow: enable efficient workflow execution for function-as-a-service,” in
Proceedings of ACM ASPLOS, 2022.

[25] Envoy, “Envoy is an open source edge and service proxy, designed
for cloud-native applications,” 2025. [Online]. Available: https:
//www.envoyproxy.io/

[26] A. Lazar, “The throughput time delay function of an m/m/1 queue
(corresp.),” IEEE Transactions on Information Theory, vol. 29, no. 6, p.
914–918, 2006.

[27] S. Di, D. Kondo, and W. Cirne, “Host load prediction in a google
compute cloud with a bayesian model,” in Proceedings of SC, 2012.

[28] S. Eismann, J. Scheuner, E. v. Eyk, M. Schwinger, J. Grohmann,
N. Herbst, C. L. Abad, and A. Iosup, “The state of serverless appli-
cations: Collection, characterization, and community consensus,” IEEE
Transactions on Software Engineering, vol. 48, no. 10, pp. 4152–4166,
2022.

[29] Intel, “Intel intelligent fabric processors,” Online: https://www.intel.co
m/content/www/us/en/products/details/network-io/intelligent-fabric-pro
cessors.html, 2024.

[30] F. F. C. G. Giuseppe Amato, Fabio Carrara and C. Vairo, “Car parking
occupancy detection using smart camera networks and deep learning,”
in Proceedings of IEEE ISCC, 2016.

[31] NS-3, “A discrete-event network simulator for internet systems, ns-3,”
2025. [Online]. Available: https://www.nsnam.org/

[32] L. Wojciechowski, K. Opasiak, J. Latusek, M. Wereski, V. Morales,
T. Kim, and M. Hong, “Netmarks: Network metrics-aware kubernetes
scheduler powered by service mesh,” in Proceedings of IEEE INFO-
COM, 2021.

[33] H. C. J. H. M. H. C. C. K. P. Yi Hu, Haonan Ding, “Collaborative
orchestration with probabilistic routing for dynamic service mesh in
clouds,” in Proceedings of IEEE INFOCOM, 2025.

[34] J. Park, J. Park, Y. Jung, H. Lim, H. Yeo, and D. Han, “Topfull: An
adaptive top-down overload control for slo-oriented microservices,” in
Proceedings of ACM SIGCOMM, 2024.

[35] N. Zheng, T. Qiao, X. Liu, and X. Jin, “MeshTest: End-to-End testing
for service mesh traffic management,” in Proceedings of USENIX NSDI,
2025.

[36] F. Lu, X. Wei, Z. Huang, R. Chen, M. Wu, and H. Chen,
“Serialization/deserialization-free state transfer in serverless workflows,”
in Proceedings of ACM EuroSys, 2024.

[37] N. Lazarev, S. Xiang, N. Adit, Z. Zhang, and C. Delimitrou, “Dagger:
efficient and fast rpcs in cloud microservices with near-memory recon-
figurable nics,” in Proceedings of ACM ASPLOS, 2021.

[38] D. Saxena, W. Zhang, S. Pailoor, I. Dillig, and A. Akella, “Copper
and wire: Bridging expressiveness and performance for service mesh
policies,” in Proceedings of ACM ASPLOS, 2025.

[39] S. Ashok, V. Harsh, B. Godfrey, R. Mittal, S. Parthasarathy, and
L. Shwartz, “Traceweaver: Distributed request tracing for microservices
without application modification,” in Proceedings of ACM SIGCOMM,
2024.

[40] M. Scazzariello, T. Caiazzi, H. Ghasemirahni, T. Barbette, D. Kostić,
and M. Chiesa, “A High-Speed stateful packet processing approach for
tbps programmable switches,” in Proceedings of USENIX NSDI, 2023.

[41] R. Miao, H. Zeng, C. Kim, J. Lee, and M. Yu, “Silkroad: Making
stateful layer-4 load balancing fast and cheap using switching asics,”
in Proceedings of ACM SIGCOMM, 2017.

[42] D. Kim, J. Nelson, D. R. K. Ports, V. Sekar, and S. Seshan, “Redplane:
Enabling fault-tolerant stateful in-switch applications,” in Proceedings
of the ACM SIGCOMM, 2021.

[43] C. Zeng, L. Luo, T. Zhang, Z. Wang, L. Li, W. Han, N. Chen, L. Wan,
L. Liu, Z. Ding, X. Geng, T. Feng, F. Ning, K. Chen, and C. Guo,
“Tiara: A scalable and efficient hardware acceleration architecture for
stateful layer-4 load balancing,” in Proc. of USENIX NSDI, 2022.

[44] Y. Feng, Z. Chen, H. Song, Y. Zhang, H. Zhou, R. Sun, W. Dong, P. Lu,
S. Liu, C. Zhang, Y. Xu, and B. Liu, “Empower programmable pipeline
for advanced stateful packet processing,” in Proceedings of USENIX
NSDI, 2024.

