
Scalable and Interactive Simulation for IoT
Applications with TinySim

Gonglong Chen, Wei Dong, Fujian Qiu, Gaoyang Guan, Yi Gao, and Siyu Zeng

College of Computer Science, Zhejiang University.

Alibaba-Zhejiang University Joint Institute of Frontier Technologies.

Email: {desword, dongw, qiufj, guangy, gaoyi, 21860434}@zju.edu.cn

Abstract—Modern IoT applications are characterized by three
important features, i.e., the device heterogeneity, the long-range
communication and the cloud-device integration. The above
features cause difficulties for IoT application developers in
predicting and evaluating the performance of the entire system.
To tackle the above difficulties, we design and implement an
IoT simulator, TinySim, which satisfies the requirements of high
fidelity, high scalability, and high interactivity. Many virtual IoT
devices can be simulated by TinySim at the PC end. These
IoT devices can send or receive messages from the cloud or
smartphones, making it possible for the developers to evaluate
the entire system without the actual IoT hardware. We connect
TinySim with Unity 3D to provide high interactivity. We design
an approximation-based approach to reduce the amount of
simulation events, greatly speeding up the simulation process.
We conduct extensive experiments to evaluate the performance
of TinySim. Results show that TinySim can achieve high accuracy
with an error ratio lower than 9.52% in terms of energy and
latency. Further, TinySim can simulate 4,000 devices within 11.2
physical-minutes for 10 simulation-minutes, which is about 3×
faster than the state-of-art approach.

I. INTRODUCTION

The recent years have witnessed the rapid development of

IoT (Internet of Things) technologies and applications. Devel-

opers are often confronted with difficulties in implementing

a real-world IoT application. For example, developers may

have difficulties in evaluating the entire application before

the IoT devices are designed and deployed. Unlike PCs and

smartphones, IoT devices are special ones which vary with

different applications. Hence, the design takes time. The above

difficulties would be tackled by using an accurate and scalable

IoT simulator. With its availability, IoT developers can quickly

simulate the entire applications and evaluate the feasibility of

their innovative ideas.

In this poster, we aim to design and implement a sim-

ulator for modern IoT applications satisfying the following

requirements: High fidelity. The simulator should capture the

device-level behaviors in a fine-grained manner. Otherwise, it

is impossible to evaluate the timing and energy performance of

the system. High scalability. Future IoT system would consist

of a vast number of IoT devices. The simulator should execute

at a high speed and can scale to many IoT devices. High
interactivity. The simulator should provide a user-friendly

debug and program UI. Developers can conveniently create

scenarios or change environments to trigger events to verify

the functionality of IoT applications.

Wireless 

Smartphone 
(real)

Base Station 
(sim.)

Wireless 

Smartphone (sim.)

IoT devices 
(sim.)

...
...

Real link
Sim. link

Cloud (real)

Fig. 1: Network architecture of simulating entire IoT
applications in TinySim.

We have designed and implemented TinySim, to meet the

above requirements. To use TinySim, the developer writes a

device code in a hardware-independent language, TinyLink

language, which can be directly used for our simulation.

We map TinyLink code into hardware-dependent instructions

without actually running them. This approach allows us to

obtain high fidelity without overhead to really execute the

instructions. To increase scalability, we propose an approx-

imation based approach to reduce time-consuming events.

The behaviours of the time-consuming events are trained

using a machine algorithm, e.g., LSTM (Long Short-Term

Memory) [1]. The results (e.g., the transmission delay) after

executing events are predicted by the machine algorithm. The

simulation speed is further sped up by distributing events to

many machines. To provide the high interactivity, we connect

TinySim with a powerful gaming engine Unity 3D. The

different simulation speed of TinySim and Unity 3D leads to

the large overhead of the event synchronization. To deal with

this problem, we propose a dependence graph-based approach

to reduce the synchronization overhead while maintaining a

good programming experience.

II. TINYSIM OVERVIEW AND MAIN MODULE

Fig. 1 depicts the network architecture of TinySim, which

covers most of a typical IoT application, i.e., the devices,

the base station, the cloud and the smartphone. Between
devices and the base station. Currently, TinySim supports

the two most promising LPWAN technologies, i.e., NB-IoT

and LoRaWAN. Between the base station and the cloud. It

is achieved by using the real internet via wired connections

between the PC and the cloud. Between the smartphone and



Quectel LTE BC95 NB-IoT Module

High Voltage Power 
Monitor (HVPM)

Soil Mosture 
Analog Sensor

Grove Light 
Sensor

Arduino UNO

Base Shield V1.3

HVPM screenshot

Fig. 2: Monitoring power consumption using HVPM.
TABLE I: Relative error of simulation.

Benchmark 
Power (mJ) Delay (s) 

Sim. Meas. Err Sim. Meas. Err 
Upload 906.43 866.08 4.66% 0.72 0.69 4.53% 
Require (SNR=5dB) 194.54 201.67 -3.54% 1.07 1.1 -2.51% 
Voice control 19000.00 19983.23 -4.92% 2.00 2.1 -4.76% 

the cloud. Developers can control the simulated nodes via an

Android application, or generate controlling messages at the

PC end.

Fidelity. To achieve this, TinySim simulates four main

hardware components. For the mainboard, the sensor and
display module, TinySim captures MCU’s timing behaviour

by translating the source codes to the MCU instructions. The

elapsed time is calculated based on the mapping between MCU

instructions and execution time documented in datasheet. The

power consumption is then inferred by multiplying the timing

behaviours with the corresponding states. For the communica-
tion module. TinySim carefully simulates the communication

behaviours, e.g., the transmission collisions in the random

access process in NB-IoT.

Virtual scenario creation. TinySim is connected with Unity

3D, a powerful cross-platform game engine. To reduce the

synchronization overhead between TinySim and Unity 3D.

We carefully design a dependence graph-based approach. For

example, when there is event mismatch between TinySim and

Unity 3D, we only need to roll back and re-execute partial

events following the dependency graph instead of all events.

Scalability. One of the main factors that affect the simu-

lation scalability is the number of time-consuming simulation

events, which is increased with the number of simulated nodes.

TinySim utilizes a machine learning-based approach to reduce

the number of simulation events. Specifically, by learning the

transmission behaviour of every transmission link, the number

of transmissions and the related statistics (e.g., the delay and

the power consumption) for one transmission can be directly

obtained without actually executing.

III. EVALUATION AND CONCLUSION

Hardware. We use two real IoT applications to evaluate the

fidelity of TinySim. One is the smart flower spot application.

It periodically uploads the sampled data and responses to

the required data. Another application is the voice-controlled

LED lamp which is the same with [2]. To accurately measure

the power consumption, we use HVPM (High Voltage Power

Monitor) of Monsoon as shown in Fig. 2. High Fidelity.
Table I shows that TinySim can accurately simulate the power

0.5 1 1.5 2 2.5 3 3.5 40

8

16

24

32

40

Node Size (x1000)

R
ea

l W
or

ld
 T

im
e 

(m
in

)

0.5 1 1.5 2 2.5 3 3.5 4 0

0.05

0.1

0.15

0.2

R
el

at
iv

e 
E

rr
or

 (%
)

NS−3−Speed
TinySim−Speed
NS−3−RelativeError
TinySim−RelativeError

(a) Simulation scale.

0 0.2 0.4 0.6 0.8 10

24

48

72

96

120

The approximation fraction

R
ea

l W
or

ld
 T

im
e 

(m
in

)

0 0.2 0.4 0.6 0.8 1 0

0.05

0.1

0.15

0.2

R
el

at
iv

e 
E

rr
or

 (%
)

TinySim−Sepa−Speed
TinySim−LSTM−Speed
TinySim−Sepa−RelativeError
TinySim−LSTM−RelativeError

(b) Approximation fraction.

Fig. 3: Scalability (10 simulation minutes, 4000 nodes).

(a) The smart home application. (b) The shared bike application.

Fig. 4: High interactivity with Unity 3D.

consumption and the action delay with a low average error

rate (e.g., 3.8% for the power consumption and 3.95% for the

action delay). High scalability. Fig. 3(a) shows the results

of comparing TinySim with the most related simulator ns-

3 [3].Results show that TinySim achieves a faster simulation

speed than ns-3 thanks to the simulation approximation and

enabled distributed simulation. To evaluate the impact of

the approximation fraction on TinySim, we replace different

machine learning algorithms of TinySim, e.g., LSTM [1]

(TinySim-LSTM), train separate models for different metrics

(TinySim-Sepa). Fig. 3(b) shows that TinySim-LSTM can

achieve 47.6% faster simulation speed with lower than 5%

accuracy degradation compared with TinySim-Sepa. High
interactivity. Fig. 4(a) presents developers can interactively

program and debug a typical smart home application with

TinySim. Fig. 4(b) shows a shared bike application and

TinySim is integrated with an online IDE.
In this poster, we present TinySim, an IoT simulator for

providing entire support to IoT applications. TinySim satisfies

the requirements of high fidelity, high scalability, and high

interactivity. The future work includes two directions. First,

extending TinySim with more communication protocols. Sec-

ond, extending TinySim with core network simulation.

IV. ACKNOWLEDGEMENTS

This work is supported by the National Key R&D Program

of China under Grant No. 2019YFB1600700, the National

Science Foundation of China under Grant No. 61772465, Zhe-

jiang Provincial Natural Science Foundation for Distinguished

Young Scholars under No. LR19F020001.

REFERENCES

[1] H. Sepp and S. JÃijrgen, “Long short-term memory,” in Neural Compu-
tation, vol. 9, no. 8, 1997, pp. 1735–1780.

[2] G. Guan, W. Dong, Y. Gao, K. Fu, and Z. Cheng, “TinyLink: A Holistic
System for Rapid Development of IoT Applications,” in Proc. of ACM
MobiCom, 2017.

[3] A. K. Sultania, C. Delgado, and J. Famaey, “Implementation of NB-IoT
Power Saving Schemes in Ns-3,” in Proc. of the Workshop on Next-
Generation Wireless with Ns-3, 2019.


