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Abstract—While numerous wireless applications are emerging
to simplify our daily life, updating price tags in large-scale
markets is still largely performed manually. Considering the
potential adoption of electronic price (e-price) tags, we propose
MoRa, a LoRa-based system for timely and energy-efficient price
update in Markets. By leveraging the category information in
the market, we design a hierarchical address scheme. Based on
the scheme, we can perform efficient multicast with nearly zero
overhead in group joining and activity scheduling. Furthermore,
considering LoRa’s characteristics and the asymmetry between
the gateway and nodes, we let the gateway make fast and
repetitive transmissions before the uncovered nodes send light
weight NAKs. Extensive testbed experiments and simulation
evaluations are conducted. Results demonstrate that MoRa can
efficiently improve the performance in terms of update delay and
energy consumption.
Keywords—e-price tag, LoRa, multicast, delay, energy.

I. INTRODUCTION

With the proliferation of low-power wireless technologies,

many applications are emerging to offer efficiency and conve-

nience for our daily life. Unfortunately, in large-scale markets

where the product prices can change every two hours [1], price

updating is still largely performed manually. It introduces not

only intensive labor effort but also long update latency. With

the emerging of low-power technologies, e-price tags show

the potential to enable a wireless automatic system for price

management in the market. In this paper, we consider a system

for timely and reliable price updates on such e-price tags.

However, a few works have been carried out. In a recent

work MarketNet [1], the authors proposed an 802.15.4-based

asymmetric system for price tagging. As short-range multihop

networks cause unfair energy consumption among nodes [2],

they use a high-power root node to perform single-hop down-

link communications. However, due to power constraints at

the nodes, the uplink is still performed in a multihop fashion.

Emerging lower-power wide-area networks (LPWAN) come

as promising technologies, such as NB-IoT, eMTC, etc. A-

mongst them, LoRaWAN has been attracting considerable

interests from both academia and industry due to its open

standards. Powered by batteries, LoRa nodes can reach several
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Foundation for Distinguished Young Scholars under Grant No. LR19F020001.

kilometers away for several years. LoRaWAN defines three

classes to cater for different requirements in terms of delay

and power consumption. Among them, providing additional

downlink windows, class B is the most promising type to save

power with bounded latency.
However, with nodes deciding their schedule randomly and

locally, the gateway can not schedule the network resources

efficiently and globally. Therefore, our design is directly based

on LoRa PHY and we reschedule their activities. Thanks to

its long-range, nodes are within direct reach of the gateway

and network-wide synchronization can be easily achieved.

However, to perform price updates for a huge number of nodes,

activity scheduling can be both time- and energy- consuming.

Can we avoid such unwanted overhead in the scheduling

process?
In addition, considering the huge number of nodes and

relatively low data rate of LoRa, the time for a network-

wide update one by one can be extremely long. To reduce the

delay, multicast provides a promising way by transmitting one

piece of data towards a group of nodes. Generally speaking, to

perform multicast, there are rounds of information exchange

between nodes and the gateway for group joining and request

acceptance. And for the next multicast task, the group forma-

tion may change and it will need another joining procedure.

Such a joining process is again time and energy costly. Can

we avoid such unwanted overhead in the joining process?
To answer the two questions above, we incorporate the

category information of products in markets to design a

hierarchical address scheme. Based on this scheme, joining

and scheduling overhead can be largely eliminated as group

information is implicitly indicated and nodes can locally

schedule their reception orders. Furthermore, considering the

asymmetric abilities between nodes and the gateway, we shift

the most burden to the resource abundant gateway. It conducts

fast and repetitive transmissions to reduce nodes’ reception

time and response overhead. We further reduce delays and

energy consumption at the node side through light weight

NAK transmissions. We incorporate these designs into a

system, MoRa. It can achieve reliable multicast for e-price

tag update efficiently.
The contributions of our work are summarized as follows:

• We take advantage of LoRa’s long-range characteristics
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and design a market-specific hierarchical address scheme,

resulting in a reduction of update delay and energy con-

sumption by reducing joining and scheduling overhead.

• At the gateway’s side, we design a fast and repetitive
transmission scheme to reduce nodes’ time and energy

waste on data reception.

• At the nodes’ side, we enable light weight NAK trans-
missions to cut down time and energy consumption on

negotiation.

• We conduct extensive testbed experiments and simula-
tion evaluations. Results show that MoRa can efficiently

improve the performance in terms of update delay and

energy consumption.

The remainder of the paper is organized as follows. Section

II introduces the related work. Section III presents some

preliminary studies that motivate our design. In Section IV

we present the MoRa design with details. Testbed experiments

and simulation evaluations are presented in Section V. Section

VI concludes this paper and discusses future work.

II. RELATED WORKS

Wireless Systems for Smart Market. There are tens of
thousands of products labeled with price tags in a market,

of which the price can change even eight times a day [1].

Manual price update is not only labor-intensive but also time-

cost. A few works have been carried out to automate this

process. The electronic price label (EPL) system brought up

in [3] takes the early trial. It is an RFID design which permits

two-way data transfer between price tags and a controller.

With a modulated backscatter uplink, it’s supposed to operate

on a watch battery for over five years. Recent marketNet

[1] proposed an 802.15.4-based system. They adopt a high-

power root to enable one-hop downlink but still perform multi-

hop uplink due to range limitation. And they do not use

multicast considering complex addressing and ACK explosion.

Our work is the first to adopt the low-power and single-hop

LoRa into the market scenario. We enable efficient multicast

based on our hierarchical address design and benefit from the

ACK explosion.

Wireless Multicast. In the case of IP networks, hosts use
Internet Group Management Protocol (IGMP) [4] or Multicast

Listener Discover (MLD) [5] to announce their interests in

receiving multicast messages for IPv4 and IPv6. Router main-

tains a list of group members in its sub-network. Previous

research efforts on multicast for Wireless Sensor Networks

(WSN) mainly focus on finding a subset of nodes to relay the

multicast message generated at the source node to the destina-

tions. The majority in traditional WSN is geographic multicast

algorithms. Based on the location obtained from the neighbors,

multicast messages are forwarded to intended destinations [6].

These algorithms maintain a list of all destinations within the

packet header, introducing overhead and impairing scalability.

With great efforts towards the seamless integration of WSNs

with the Internet, standards RFC 4944 [7] and RFC 6282

[8] shaped 6LowPAN for IPv6 datagram fragmentation and

header compression over 802.15.4 networks. And RFC 6550

[9] specified RPL for IPv6 routing over low-power and lossy

networks (LLNs). While multicast is quite complex for IP

networks, the Source-Specific Multicast (SSM) [10] simplified

it for WSNs. A host joins the multicast groups with spec-

ifying source addresses it wishes to hear from. The source

identification cut down the routing overhead. In the Multicast

Forwarding Using Trickle [11], routers store the multicast

message they have seen and they exchange such information

through ICMPv6 messages at a rate controlled by Trickle

[12]. Absent datagrams are forwarded subsequently. Later

works further utilized tree-structure from RPL as the multicast

tree and made further optimizations [13]. Our work differs

in two ways. First we dopot long-range LoRa for single-

hop transmission to avoid overhead on routing construction

and maintenance. Second, we propose a hierarchical address

design to reduce time and energy consumption on group

joining.
Multicast Acknowledgement. Despite the efficiency of-

fered by multicast, the following issue is to gather feedback

from group members. Simultaneous feedbacks cause the prob-

lem of ACK storm [14]. Existing solutions fall into three

categories. The first is the promiscuous reception of unicast,

where multicast messages are sent to a selected receiver’s

unicast address while the other nodes in the multicast group

listen promiscuously [15]. It achieves collision-free by RT-

S/CTS signaling and confine feedback to this selected node.

The second is the polling-based scheme where the sender

inquires about the packet reception status from each member

in the multicast group sequentially. Retransmissions are made

on packet loss until ACKs from all nodes are received [16].

It guarantees reliability at the cost of consuming additional

network resources and can not scale. The third is leader-based

schemes that a leader represents the multicast group [17]. It

sends ACK upon successful reception. At the same time, other

nodes will send NAK to destroy the ACK from the leader and

seek retransmissions. It avoids collisions from different groups

by performing RTS/CTS beforehand. Our design does not

introduce additional overhead and reduces acknowledgment

collection delay.

III. MOTIVATION

In this section, we will present the most related background

on LoRaWAN and LoRa, further details can be found in [18].

Then we use an example to clearly illustrate the efficiency of

our design. Finally, we conduct some preliminary studies that

motivate our LoRa-based design.

A. Background
In class B of LoRaWAN, periodical beacons from the

gateway offer time reference for receiving nodes. As can be

seen from Fig. 1, the remaining space within two beacons, the

BEACON WINDOW, is divided into 4096 ping slots of 30 ms

each. Nodes decide their scheduling individually and inform

the gateway of these parameters. The pingOffset indicates the

random start of the first slot and the pingPeriod should be

2k where 5 ≤ k ≤ 12. Based on Chirp Spread Spectrum
(CSS) modulation, LoRa has a key parameter named spreading
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Fig. 1. Class B beacon and slot timing. PingOffset is randomly decided by
individual nodes and the pingPeriod should be at least 960 ms.

Fig. 2. A simple example of a multicast task. Each multicast task is composed
of joining process, scheduling process and multicast communication. Joining
and scheduling overhead take a large part of the total update delay.

factor (SF) indicating the data rate. Also, higher SF and higher

transmission power are both able to boost the transmission

range.

B. Example

Fig. 2 show an example of performing multicast on three

nodes. N1 and N2 are in group one and N3 is in group

two. In every multicast task, there are joining and scheduling

processes that nodes should first go through. In the joining

process, a node sends the group joining message and the

gateway acknowledges with necessary information like the

multicast address. Then the gateway should schedule the mul-

ticast timing and ask the nodes to wake up at the corresponding

time. For the sake of illustration simplicity, we assume each

message an equal on-the-air time of 100 msec and there are

no packet loss and no spacing between two transmissions.

As can be seen from Fig. 2, it takes 1,100 msec for each

multicast task where the actual multicast communications take

a small portion of 18%. With the change of group formation in

the next multicast task, joining and scheduling are performed

again before the multicast communication. If we can avoid the

joining and scheduling overhead, we can reduce the update

time and energy consumption by 82%.

C. Preliminary Study

Apart from the joining and scheduling overhead, class B

timing and SF value also have impacts on the update delay and

energy consumption. To further understand this, we deploy 10

nodes and a gateway in our laboratory building as can be seen

in Section V. To make the experiment more controllable, we

let the nodes stay awake all the time and send unicast downlink

data packets to them according to the class B timing. We make

sure the slot interval between two nodes is long enough to

accommodate traffic to and from the node. Also, the interval

between the same node follows the pingPeriod regulation and

Fig. 3. Update delay of different SF under retransmissions. Delay grows
exponentially with SF and a lower SF with retransmissions is much more
time-efficient for guaranteeing reliability.

takes the possible smallest one. Considering 13-bytes packet

header and one-bit ACK flag [18], we make the gateway

transmit data packet of 23 bytes and nodes reply with 13-

bytes ACK upon successful reception. We fix their transmitting

power to 13 dBm and vary SF for each experiment. For every

SF, the experiment is repeated for at least 5 times. We denote

the update delay as the time elapses at the gateway between

the first downlink data packet sent and the last uplink ACK

packet received.

Insight one: Fast retransmissions. For different SF, we
further classify the results into three groups according to the

retransmission times at the gateway. This is due to the packet

loss at a node and the gateway has to retransmit the data packet

at its next assigned slot. The results are shown in Fig. 3. As

expected, update delay grows exponentially with SF and adds

up with retransmissions. Another important observation is that,

while achieving the same reliability (100%), lower SF with

retransmissions is much more time-efficient than higher SF

without retransmissions. Looking from our results, the update

delay of SF=12 without retransmissions can be eighteen times

that of SF=7 with two retransmissions. This offers us the first

insight to achieve reliability with fast retransmissions in a

time-efficient way.

Insight two: LoRa PHY only. We further breakdown the
update time into three parts of data transmission, ACK trans-

mission and idle. The results are presented in Fig. 4. We can

see that the idle slots contribute a lot to the total update delay,

reach 50% when SF=8 even without retransmissions. It gains a

larger ratio with increasing retransmissions. This is due to the

sparse schedule of class B so that network resources are not

optimally utilized and the update delay is unnecessarily long.

We believe it would be even worse when taking into account its

local decision on a random slot start. Possible slots overlapping

increase the time for the gateway to address these nodes each

at a time. The sudden change of ratio around SF=8 is caused

by the relatively fixed slot length. Fig. 4(d) also illustrates

this. To guarantee the transmission of data and ACK packets,

the reception of two nodes is separated with an interval of

power of 2. Slots number needed for two-way transmission

of SF=8 is more than 32 thus 64 slots are assigned, which is

large enough to accommodate that of SF=9. Therefore, there

appears the largest idle ratio in SF=8. This gives us the second

insight to base on LoRa PHY and redesign slot scheduling.
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(a) Retransmission=0 (b) Retransmission=1 (c) Retransmission=2 (d) Delay and interval

Fig. 4. (a-c) Breakdown of update delay with different SF under retransmissions. There is much time wasted in idle state and the overhead of data and ACK
are comparable. (d) Update delay and interval time with different SF. The update delay indicates the actual time takes for transmission and the interval time
indicates the time assigned by class B specification. The gap between the two shows the inefficiency of class B scheduling.

Insight three: Ability asymmetry. Another thing we can
observe from Fig. 4 is that there is comparable overhead

for data and ACK transmissions. Considering the asymmetric

capability of nodes and the gateway, further optimization

can be made upon such a situation. For the gateway, it can

transmit faster without energy constraint. For the node, the

ACK overhead can be further reduced. This gives us the third

insight to let the gateway transmit data packet at the possible

highest power with using the fastest SF 7 and let the nodes

send light-weight acknowledgments.

IV. DESIGN

Fig. 5 shows an overview of MoRa. At the gateway’s

side, it receives multicast task command from the server.

Based on this, the gateway decides the repetition time through

scheduling module and pass it to the retransmission module.

It also informs the repetition time and concerned groups to

all nodes. At the node’s side, the repetition time is a direct

input to the slot calculation module. The concerned group

addresses are input into the address matching module, through

which the nodes learn their group participation. The group lists

received are also an input of the slot calculation module. With

an overview of the concerned groups and multicast repetition

time, the node’s slot calculation module outputs the wake-

up timing of it. Within the scheduling slot, nodes without

successful reception will perform NAK sending at the start

of the collision window. At the gateway’s side, it detects

a successful NAK or NAK collision and conducts further

retransmissions.

An example of an activity diagram is presented in Fig. 6

with a repetition time of two. N1 and N2 are in group one

and N3 is in group two. By receiving the broadcast message

from the gateway, all nodes can compute their scheduling for

multicast individually. Gateway transmits repetitive multicast

messages to different groups at their corresponding wake-up

time. After the multicasting phase, N2 and N3 go through

packet losses and send NAK simultaneously at the collision

window. While the two NAKs collide at the gateway, the

detection of collision still asks further retransmissions from

the gateway. We can see that without the joining process and

with simplified scheduling, the actual multicasting forms the

most portion of an update task.

Before stepping into the design details in corresponding

subsections, we make clear two unique aspects of price tag

Fig. 5. Overview of MoRa.

task at markets: (1) The association between a node and

a product should be throughout a node’s lifetime unless

manually changed. (2) For price consistency, a node should

just accept price change once within a single updating task.

The former gives us the confidence to assign a static address

to a node once and the latter makes it safe for a node to return

to sleep mode immediately after successful reception.

A. Hierarchical Multicast Address

In a large-scale market, there are tens of thousands of items.

For ease of illustration, we take it as ten thousand. Therefore,

market-wide reliable unicast means repeating ten thousands

of two-way communications for several rounds. To cut down

the number of downlink streams and thus the time budget,

multicast is a promising way. However, multicast in IPv6

involves in four-way handshaking for each node in joining

groups, introducing heavy communication overhead and huge

energy consumption. This is also the reason why [1] uses only

unicast. More generally speaking, in the traditional multicast

applications, the nodes send multicast group joining messages

and the gateway replies with corresponding group addresses.

After nodes are all in groups, the gateway schedules the

multicast timing on different groups and informs every node of

this. Only after the joining process and the scheduling process

will the multicast phase start. We hope to reduce or even

eliminate the joining and scheduling overhead to cut down

the time and energy consumption for price updating.

It is the common case that products on the racks are

managed by different classifications. They are usually divided

into category, sub category, sub-sub category, and type. Also,
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Fig. 6. An example of an activity diagram in MoRa. Nodes get essential
information through the broadcast message from the gateway and locally
compute their scheduling. After repetitive multicasting, N2 and N3 without
successful reception send NAK simultaneously. NAK collision at the gateway
still triggers further retransmissions.

TABLE I
AN EXAMPLE OF PRODUCTS CLASSIFICATION IN MARKETS.

it is common in our daily life that all products discount for

festival promotion or certain categories like vegetables and

fruits are on sales considering their freshness. Table I shows a

simple example. This classification of market products allows

us to group nodes based on their category level. Considering

the relatively static category level, group formation can remain

the same for every multicast task. Therefore, we design a hi-

erarchical address scheme based on the category information.

Take Table I for example. We simply design a four-byte

hierarchical address with four fields. Suggested by the market

manager, 256 is large enough to present categories at each lev-

el. Note that a complete classification list of the products from

the manager will further help optimize address design in the

size of each field. With each address contains all its relatively

static category information, it can avoid joining varying groups

for each update task. Within each field, the address of all zero

is reserved. We are going to make a general elaboration on

unicast, multicast and broadcast correspondingly.

• Unicast: To perform a price update on Lemon, the gate-
way should send a packet with the destination address

of 1112H. Once upon receiving the packet, the node

associated with Lemon will pass the address matching

and receive the packet.

• Multicast: To perform price updating on the Fruit sub-sub
category, the gateway sends a packet with the destination

address of 1110H. The node represents Strawberry has

an address of 1111H and the node represents Lemon has

an address of 1112H. Once upon receiving the packet,

they perform a process to check match from the top-

level “category” field to the lowest-level “type” field.

With the perfect match till “sub-sub category” field and

the remaining “type” field is of all zero, they will both

receive the packet. A packet with the address of 1120H

or 1113H will otherwise be discarded.

• Broadcast: To perform price updating on all the products
or launch commands, the gateway sends packets with a

destination address of 0000H. All the nodes will find that

no field match and the remaining fields are of all zero.

Thus the packet will be received.

In this way, unicast, multicast and broadcast can be achieved

at the nodes’ side through simply address matching. While

in this paper, we only consider broadcast and multicast and

leave the incorporation of unicast as future work. To reduce

nodes’ idle listening and perform address matching for all

incoming packets, we introduce the broadcast phase where all

nodes wake up and receive the message about the repetition

time and concerned groups. Through address matching, nodes

learn their group in this multicast task. Then through the slot

calculation, nodes get their slot scheduling and sleep until that.

B. Gateway Retransmissions
As suggested in Section III, the main-powered gateway

can reach all the nodes fast at the cost of amplifying its

transmitting power. To guarantee the reliability, existing works

expect ACK/NAK from all nodes or some representatives soon

after each transmission to perform retransmission accounting

for packet loss. Considering our scenario, the gateway can

transmit much faster than nodes do and the dynamic network

environment is much likely to cause packet loss. Therefore,

a traditional acknowledgment scheme will introduce unneces-

sary delay and energy consumption for the nodes to query for

retransmission which is much likely to be performed.
Also, the overhead of acknowledgment can even be high and

impacts the update delay. As the low-power nodes are battery-

powered, SF and transmission power should be optimized to

maintain connectivity. We can infer that it is much likely that

nodes scattered in the market will adopt different SF and there

are nodes under severe environment have to use SF=12 to keep

connectivity energy-efficiently. As suggested in [18], it takes

1482.75 ms to transmit a typical 13 bytes ACK.
In this way, we defer the response from nodes after gate-

way’s several beforehand retransmissions. Theoretically, it

takes the gateway only 61.7 ms to transmit 23 bytes message

with SF=7. Also, we ease the ACK burden by redesigning a

small one with only preambles.

C. NAK Response
To guarantee reliability which is much important in markets,

nodes should response with gateway’s transmission to help

conduct retransmissions for packet losses. Keep nodes’ relative

low abilities in mind, we let nodes with successful receptions

just go to sleep and nodes without receptions respond with

NAK. Because NAK is the true trigger for retransmissions.
Given we perform multicast for time-efficient price updates,

there are possible simultaneous NAK from the group members

and cause the ACK storm problem [14]. Considering the huge

number of nodes, leader-based ACK can be the promising

one. In [17], the leader will transmit ACK upon successful

reception or do nothing. Other nodes except for the leader will
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send NAK without reception. As nodes are synchronized and

in the same channel, NAK from other nodes will destroy the

ACK from the leader if any. Without the successful reception

of ACK, the base station will schedule its retransmission. It

avoids collisions from different groups by performing RT-

S/CTS beforehand.

However, such a scheme can not be directly adopted in our

scenario. On one hand, RTS/CTS is quite a huge overhead

considering the low rate of LoRa. On the other hand, transmis-

sions with different SF are orthogonal to each other thus they

operate on different virtual channels. Therefore, an ACK with

SF=7 will reach gateway much faster than a NAK with SF=12

and will not be destroyed. Moreover, with nodes deciding their

SF locally to combat interference and traditional CSMA not

working, intra- and inter-group collisions are more severe.

In our case, we ease such burden by treating different

multicast groups as a whole one. That is the gateway does not

have to distinguish the received NAK from wich group and

just perform multicast on all groups. This is at the expense of

sacrificing a little delay. However, considering that the gateway

has a rate of 20 more times than that of the nodes, straight

retransmission is far more time-efficient than that after nodes’

negotiation. Furthermore, as only the nodes without successful

reception will stay awake for retransmissions, such a scheme

will not add the energy consumption on the nodes. And we

do allow nodes in the same group to waste their energy for

one NAK sending, but this can be less than the consumption

on rounds of negotiation and several idle listening for polling.

Moreover, the maximum delay is at most the time to send a

NAK with SF=12. We call it collision window which starts

after the repetitive transmissions and where nodes all transmit

NAK.

D. Putting Everything Together
Considering the uncertainty of price update task arrival

and energy efficiency, nodes in the network may have two

states, the regular state, and the update state. The state switch
command is from the server-side and included in the gateway’s

beacon. Every node to join the network at first searches for

the beacon. When the update task arrived, the nodes will

switch to the update state. Once received the update message
successfully, nodes will switch back to the regular state and

only wake up for the beacon reception.

Followed by the beacon is a broadcast window. Nodes

all stay awake and gateway will send a message listing the

groups to participate and the number of repetitions. Nodes

not indicated in groups go back to regular state and sleep
except for beacon reception. Other nodes will compute their

reception timing based on group order and repetition number.

As frequent switches between sleep and awake are both

time and energy consuming, transmissions before the collision

window are grouped by multicast groups. That is nodes in

one multicast group will stay awake for several downlink

transmissions and back to sleep on successful reception or

slot end. Other groups will be in sleep state until their

corresponding reception timing.

Fig. 7. Indoor setup of ten nodes (circle) and a gateway (star). The number
inside each circle denotes the node ID and the superscript indicates the floor
it is placed at.

In the multicast slots, nodes receive the packets from the

gateway and perform the address matching. If it’s addressed

to it, the node performs the corresponding price update. Once

a node receives the correct packet and goes through the update,

it turns off its radio and switches back to the regular state for
energy-saving.

After repetitive transmissions, the gateway expects a re-

sponse from nodes in the collision window. We set its length

slightly larger than the time taken for a node using SF=12 to

transmit NAK. At the end of the collision window, successful

NAK reception or NAK collision asks retransmission from the

gateway. The length of the collision window is informed to the

nodes in the broadcast slot to enable their reception for such

retransmission. Otherwise, the gateway perceives the update

task has been completed

V. EXPERIMENT

To verify the time and energy efficiency of our Mora design,

we conduct extensive experiments with an indoor testbed. And

we further conduct simulation evaluations to see the scalability

with increasing nodes.

A. Testbed Evaluation
Fig. 7 presents the topology of our indoor testbed of

ten Dragino LoRa Shield nodes [7]. They are deployed on

different floors indicated by the superscript. We place the

Dragino LG01 gateway on the roof of the same building to

offer wider coverage. At both gateway and nodes, we store

the log recording the reception time, sending time, SF and

packet RSSI. With this testbed, we study the impact of key

design parameters and exam the update delay, duty-cycle and

packet reception rate. The transmission power of the nodes is

set to 13 dBm. Nodes achieve time synchronization through

the periodical beacons from the gateway.

SF: In the first experiment, the gateway sends packets of 23-
byte payload with a transmission power of 13 dBm and varied

SF from 7 to 12. The transmission interval is two seconds

to generate 200 packets. The experiment is repeated for five

times. As can be seen from Fig. 8(a) and 8(b), results show

that while delay shows an exponential growth with increasing

SF, RSSI only shows a slight improvement of 7%. At the same

time, all the nodes maintain nearly 100% PRR.

Transmission power: For the second experiment, we fix
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(a) Delay (b) PRR and RSSI (c) RSSI (d) Delay

Fig. 8. Delay, PRR and RSSI with different SF. (a) (b) With PRR remaining nearly unchanged, increasing SF improves the RSSI a little at the cost of
exponentially increased delay. (c) RSSI at nodes when the gateway transmits with different power. Increasing transmission power significantly improves the
RSSI for larger coverage. (d) Update delay of MoRa and class B scheme.

gateway’s SF to 7 and keep other settings the same as that

in the previous one. We gradually increase its transmission

power from 13dBm to 23dBm with a step size of 1dBm. As

can be seen from Fig. 8(c), with SF=7 and transmission power

of 14dBm, nodes can achieve comparable RSSI with SF=12

when the transmission power is 13dBm in Fig. 8(b). The delay

reduction from SF=12 to SF=7 is 95% as can be seen from Fig.

8(a). Given that the higher RSSI the longer communication

range, these results manifest the efficiency in our design to

let the gateway transmit with SF=7 at a higher transmission

power to save the on-the-air time.

Repetition time: We then study the repetition time with
which the gateway performs fast retransmissions. MoRa in-

corporates such design to fully utilize the rich power at the

gateway to save time for price updates and improve the

reliability at first hand. The gateway transmits 23-byte packets

with SF=7 at a transmission power of 23dBm, resulting in a

transmission time of 61.7 msec. Nodes transmit ACK/NAK

with SF=12 at a transmission power of 13dBm, resulting in

a transmission time of 1,155.07 msec. Therefore, we set the

collision window to 1.5 seconds. To make a fair comparison

with the class B scheme, we keep the period and slot length

as the same. MoRa makes several retransmissions and waits

for NAK in the collision window. With class B, after every

transmission, the gateway expects an ACK. A lack of it makes

the gateway to retransmit to this node at its next assigned slot.

The delay denotes the duration that the gateway starts beacon

transmission for the price update process until the time that all

nodes receive the packets. We compare the delay of MoRa and

class B with varying repetition time. Both results are averaged

over five experiments.

As can be seen from Fig. 8(d), MoRa gains large delay

reduction over class B from 85%∼92% with a repetition

number from one to three. It achieves this by avoiding time

wasted on querying for retransmissions all the time. Then there

is a slight delay growth of 18% with repetition number of

four. We infer the reason may be that nodes are all updated

after three repetitions. Therefore the fourth repetition is just

a waste of time. We access to nodes’ log and confirm that

during most experiments, the update is completed within three

transmissions.

Overall performance: Finally, we present the overall per-
formance in terms of delay and energy consumption. We

design a naive approach for baseline comparison, where nodes

first go through group join procedure and slot scheduling

procedure. Then they receive multicast messages on their

groups and response with NAK of 13 bytes soon after if

needed. For MoRa, we set the repetition time to three and

collision windows to 1500 msec. We perform multicast on a

different number of groups each time and every experiment is

repeated five times.

We obtain the overall delay as shown in Fig. 9(a). Note

that, group number of ten indicates unicast and group number

of one indicates broadcast. Compared to the naive approach,

MoRa achieves delay reduction by 94.7% - 95.2% from

broadcast to unicast. Update delay shows a clear decreased

trend with the group number decreasing. This is truly the

benefit from the efficiency of multicast.

To get some further insights, we breakdown the update delay

into four parts including joining, scheduling, multicasting and

waiting. As the total delay of MoRa is still small compared to

that of the Naive, we present their breakdown individually for

a clear representation in Fig. 9(b) and Fig. 9(c) respectively.

In Fig. 9(b), it is interesting to see that the time spent

on multicast is the smallest portion and is overwhelmed by

the constant joining and scheduling overhead and increasing

waiting overhead. And in Fig. 9(c), it shows that MoRa has

nearly eliminated the joining and scheduling overhead, which

is 4.7∼38.9 times than that is spent on multicast and NAK
transmission. Also, the waiting time remains stable across

different group numbers.

We also present the average wake-up time of nodes with

MoRa and the Naive approach. This can be a proxy of energy

consumption. As can be seen from Fig. 9(d), MoRa remains

small wake-up time less than 0.5 seconds while the Naive

approach has a wake-up time of more than 3 seconds.

B. Simulation Studies
We further conduct simulation studies to see the scalability

of MoRa compared with the naive approach. We first study the

delay performance with increasing nodes number from 1000 to

10000 with a step size of 1000. Link symmetric is assumed and

link quality is fixed to 90%. Then we vary the link quality from

50% to 100% with a total number of 10000 nodes. For ease

of illustration, we assume four groups of nodes for multicast.

All results are averaged over five-time experiments.

As can be seen from Fig. 10(a), MoRa maintains delay

less than 0.1 hour all the time while the naive approach takes
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Fig. 9. (a) Overall delay of MoRa and the Naive approach. (b) The delay breakdown of the Naive approach. Time spent on multicast is overwhelmed by
other parts. While the time budget for joining and scheduling remain constant, the waiting time grows significantly with the group number increasing. (c) The
delay breakdown of the MoRa. The overhead for joining and scheduling have been nearly eliminated. And the waiting time remains stable across different
group numbers. (d) The average wake-up time of nodes with MoRa and the Naive approach.

(a) (b)

Fig. 10. (a) Delay with varied nodes number under link quality of 90% (b)
Delay with 10000 nodes under different link quality.

several hours for the same multicast. Such high latency comes

from the multicast joining and scheduling procedure, and much

time is wasted on waiting for NAK. In Fig. 10(b) with 10000

nodes, delay of MoRa stay below an hour even with link

quality as low as 50%. It’s even so small compare to that of

Naive when the link quality is 100%. The simulation results

manifest Mora’s scalability to perform multicast updates for

huge number of nodes within less than one hour.

VI. CONCLUSION

In this paper, we present a LoRa-based system to update

e-price tags in a large-scale market both time and energy

efficiently. With the category information of products, we

design a hierarchical address scheme that contains all the

category level information of a node on which the multicast

will be performed. Based on this scheme, group joining and

scheduling overhead is largelt eliminated by nodes’ local com-

putation individually. Moreover, considering LoRa’s properties

and the asymmetric ability between the gateway and nodes,

we shift the most burden to the resource abundant gateway.

Specifically, we let the gateway conduct fast retransmissions

to save nodes’ time on data reception. And for the nodes,

we further cut down the negotiation overhead by allowing

them to transmit light weight NAK directly. Extensive testbed

experiments and simulation evaluations are conducted. Results

show that MoRa can improve the price update performance in

terms of delay and energy.

There are several directions for future work. First, we would

like to explore the channel diversity for a further optimization.

Second, we would like to introduce multi-gateway not only

for wider coverage but also for combined stronger SNR at the

nodes. It is likely to achieve faster and more reliable price

update.
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