
Adaptive Path Profiling Using Arithmetic Coding

Gonglong Chen and Wei Dong

College of Computer Science, Zhejiang University
Email: {chengl, dongw}@emnets.org

Abstract—Path profiling, which aims to trace a program’s
execution path, has been widely adopted in various areas such
as record and replay, program optimizations, performance
diagnosis, and etc. Many path profiling approaches have been
proposed in the literature, including B.L. algorithm, and
PAP. Unfortunately, both approaches suffer from large tracing
overhead for representing long execution paths. In this paper,
we propose AdapTracer, a path profiling approach based on
arithmetic coding. There are two salient features in Adap-
Tracer. First, it is space efficient by adopting a path profiling
algorithm based on arithmetic coding. Second, it is adaptive by
explicitly considering the execution frequency of each edge. We
have implemented AdapTracer to profile Android applications.
Our experimental evaluation uses modified JGF benchmarks to
show AdapTracer’s efficiency. Experimental results show that
AdapTracer reduces the trace size by 44% on average and
incurs execution overhead by 10% at most compared to PAP.

Keywords-Path profiling, arithmetic coding, adaptive.

I. INTRODUCTION

Path profiling refers to the technique for tracing a pro-

gram’s execution path. A path profile gives information

about the execution behavior of the program. It has been

widely adopted in various areas such as record and replay

[1], program optimizations [2, 3], performance diagnosis [4],

and etc.

In their seminal work [5], Ball and Larus have described

an efficient path profiling algorithm (called B.L. algorithm)

using a compact numbering scheme to differentiate different

paths in a program. Specifically, the program is first modeled

as a control flow graph (CFG). When the CFG is a directed

acyclic graph (DAG), the B.L. algorithm assigns a unique

PathID in the range of [0, n−1] (where n is the total number

of paths in the DAG) to one execution path. When the CFG

is not a DAG, the B.L. algorithm first transforms the graph

into DAG by removing the back-edges. Multiple PathIDs are

used to represent a cyclic path (path that has loops), which

inevitably introduces a large overhead [6].

Recently, Li et al. propose PAP [7], an efficient path

profiling algorithm for tracing all paths including acyclic and

cyclic paths. It instruments probes on the multiple in-edges

of each CFG node and uses addition and multiplication op-

erations in the calculation of probe values. In this way, it can

effectively profile all finite-length paths within a procedure.

Then the PathID is used to restore the corresponpding path

by doing division and modulo operations reversely. When

long paths are executed, the probe value keeps growing and

may overflow. The breakpoints mechanism is introduced in

PAP to deal with this problem. A breakpoint consists of two

elements: the CFG node and the probe value before overflow.
Unfortunately, both approaches suffer from large space

overhead for representing a long execution path. For the

B.L. algorithm, multiple PathIDs may be required for the

representation. For PAP, multiple breakpoints may be re-

quired to solve the problem of PathID overflow. We also

notice that both approaches are not adaptive, i.e., they use

a fixed numbering scheme for tracing multiple executions

of the same program. Hence, they lose the opportunity to

optimize the space overhead for frequently executed paths.
To address the two problems mentioned above, we pro-

pose AdapTracer, an adaptive path profiling using arithmetic

coding. There are two salient features in AdapTracer. First,

it is space efficient by adopting a path profiling algorithm

based on arithmetic coding. Different from PAP, AdapTracer

instruments probes on the multiple outedges of each CFG

node, and uses operations involved in the integer imple-

mentation of arithmetic coding [8] for calculating the probe

values. Breakpoints for labelling a node in the CFG are not

required since AdapTracer decodes the PathID from start to

exit, unlike PAP which relies on reserve decoding. Second, it

is adaptive by explicitly considering the execution frequency

of each edge, which is recorded by the edge counter. With

the help of edge counter, AdapTracer adjusts each edge’s

probability to achieve the close-to-optimal path encoding.
We have implemented AdapTracer to profile Android

applications. Our experimental evaluation uses modified JGF

benchmarks to show AdapTracer’s efficiency. Experimental

results show that AdapTracer reduces the trace size by 44%

on average and incurs execution overhead by 10% at most

compared to PAP.
The contributions of this paper are summarized as follows:

• We identify two significant problems using existing

path profiling techniques.

• We propose a space-efficient and adaptive path profiling

technique AdapTracer to reduce the trace size.

• We implement AdapTracer and use modified JGF

benchmarks to show the effectiveness of our system.

The rest of this paper is structured as follows. Section II

describes the related work. Section III shows two examples

that motivate our work. Section IV gives an overview of

2015 IEEE 21st International Conference on Parallel and Distributed Systems

1521-9097/15 $31.00 © 2015 IEEE

DOI 10.1109/ICPADS.2015.29

164

2015 IEEE 21st International Conference on Parallel and Distributed Systems

1521-9097/15 $31.00 © 2015 IEEE

DOI 10.1109/ICPADS.2015.29

164

AdapTracer. Section V and Section VI present the details

of the AdapTracer system. Section VII shows the evaluation

results. Section VIII concludes this paper and gives future

research directions.

II. RELATED WORK

A. Path profiling

Path profiling gives useful information about the execution

behavior of the program [9–12]. It attracts much research

attention. In [5], each edge in a program’s DAG is assigned

with a weight. The PathID of an executed path is simply

the sum of edge weights. The tracing overhead of a large

program is expensive if we profile all paths. To reduce the

tracing overhead, several approaches for profiling a subset of

paths are proposed. TPP (Targeted Path Profiling) [13] elim-

inates unselected paths by assigning large negative weights

to the edges that belong to the unselected paths but not

belong to the selected paths. The selected paths are assigned

with unique positive PathIDs and the unselected paths are

assigned with non-unique negative PathIDs. The negative

PathIDs will not be recorded and the tracing overhead is

thus reduced. PPP (Practical Path Profiling) [14] extends

TPP by combining the edge weights and eliminates the

unneeded instrumentation. Profiling selected paths will miss

the opportunity of finding the bugs residing in unselected

paths. Therefore, profiling all paths is necessary for effective

bug diagnosis. Different from profiling partial paths such as

TPP and PPP, AdapTracer profiles all paths in a program.

AdapTracer can effectively reduce the tracing overhead by

assigning frequently executed paths with fewer bits.

In B.L.-like profiling approaches (e.g. TPP, PPP), multiple

PathIDs are required for representing a cyclic path. A new

PathID is added in the sequence once encountering a back-

edge. PAP (Profiling All Path) [7] profiles the acyclic path

and the cyclic path in a unified manner. A breakpoint

(i.e., the CFG node and the PathID before overflow) is

added in the sequence once the current PathID is going

to overflow, reducing the tracing overhead compared to

B.L.-like approaches. Different from the B.L. and PAP, our

approach makes full use of each PathID for the representing

of paths without extra recording overhead of CFG node.

B. Arithmetic Coding

Arithmetic coding is a well-known universal, lossless

compression technique that achieves close-to-optimal com-

pression rates [8, 15]. Like other compression mechanisms,

arithmetic coding relies on the observation that in any

given input stream, a fraction of symbols are likely to

occur frequently. Arithmetic coding achieves compression

by encoding these frequently occurring symbols using a

smaller number of bits.

Suppose we have an alphabet N = {a, b, c, d}, and

the corresponding probability model is {0.4, 0.2, 0.1, 0.3}.

0.2

0.8

(c)

A

B

C

D

0.5

0.5

(b)

A

B

C

D

A

B

C

D

r = r*2 + 1

r = r*2

 (a)

Figure 1: Examples of PAP and AdapTracer. (a) The instru-

mentation example of PAP. (b) Assigning equal probability

to the edge CB and the edge CD. (c) The example of

AdapTracer’s edge probability model.

Now, we wish to send the message daca. The encoding and

decoding procedures are shown below.

1) Encoding: Initially, both the encoder and the decoder

know that the range is [0, 1). After seeing the first symbol d,

the encoder narrows it down to [0.7, 1) (this is the range that

the model allocates to symbol d). For the second symbol a,

the interval is further narrowed, since a has been allocated

to [0, 0.4). Thus the new interval is [0.7, 0.82). For the

third symbol c, the new interval is [0.808, 0.82). For the last

symbol a, the interval is [0.808, 0.8128). The final procedure

is value selection, and a single number in the range can be

chosen for the encoding result (0.809 in our example).

2) Decoding: In order to restore the sending message, we

use the single number from the encoding. After knowing the

single number 0.809, the decoder can immediately deduce

that the first character was d. Now the decoder simulates

the action of the encoder, and the range is expanded to

[0.7, 1). In further processing, the decoder computes each

subrange using the corresponding symbol probability. Next,

the decoder can get subrange of [0.7, 0.82). So the decoder

knows that the second character was a. In this way, the

decoder can completely decode the transmitted message.

We note that it is easy for PAP to cause overflow because

it encodes path using multiplication and addition. The close-

to-optimal feature of arithmetic coding attracts us to apply

it to path profiling, reducing the tracing overhead.

III. MOTIVATING EXAMPLES

A. Benefit of using arithmetic coding

Fig. 1 (a) shows the CFG of a program where a node

denotes a code block and a directed edge denotes an execu-

tion flow. There is a back-edge between code block B and

C. Suppose that the execution path is ABCBCBCBCBCD.

165165

With loss of generality, we assume a 3-bit value is used for

one PathID.

PAP adds probes on multiple in-edges of a CFG node and

uses multiplication and addition to calculate the PathID. For

the example shown in Fig. 1 (a), it first initializes the probe

value r to 0, and then changes the value of r according to the

operation associated with each edge following the execution

path.

• After the edge AB is executed, r = 0.

• After the edge BC is executed, the probe value r is

unchanged.

• After the edge CB is executed, r = 1.

• After the subsequent edges are executed until the 3rd

CB, r = 7.

Next, just before executing the 4th CB, the probe value

will overflow if multiplication and addition are applied.

PathID overflow will cause path decoding failures. To ad-

dress this problem, PAP records the current probe value (i.e.,

7) and the current CFG node (i.e., C). It reinitializes the

probe to 0 and continues the above path encoding process.

Finally, PAP records the execution path as 7, C, 1 with

7 indicating the probe value before overflow, C indicating

the CFG node before overflow, and 1 representing the probe

value after overflow. If we use a 2-bit value to represent a

CFG node (since there are 4 nodes in Fig. 1 (a)), the overall

cost of PAP is 3 + 2 + 3 = 8 bits.

In essence, PAP uses multiplication and addition to differ-

entiate different in-edges of a CFG node. The path decoding

process starts from the exit node (i.e., D). The previous

node is iteratively inferred from the current probe value by

division and modulo operations. Since the decoding is in

reverse order, a breakpoint (containing the CFG node and

probe value before overflow) is required to infer the executed

path before overflow. Otherwise, the decoding process would

have no idea where to start for decoding the path before

overflow.

We note that two problems cause large recording overhead

in PAP. First, path encoding using multiplication and addi-

tion will easily cause overflow. Second, the CFG node in

the breakpoint causes extra overhead. Different from PAP,

AdapTracer adds probes on multiple out-edges of a CFG

node and uses arithmetic coding to address the above two

problems. Arithmetic coding can achieve more compact path

encoding than PAP. In addition, path decoding starts from

the start node with AdapTracer. Hence, the CFG node in the

breakpoint can be implicitly inferred from the probe value

before overflow, i.e., AdapTracer can effectively eliminate

overhead of CFG node in the breakpoints.

We will show in Section V that the recoding over-

head of AdapTracer is 3 bits for the execution path

ABCBCBCBCBCD, a reduction of 5 bits compared with

PAP.

ATInstrumentor

Original APK

TraceParser

Instrumented
Android application

Trace log

PC side
Mobile side

Instrumented APK New edge
probability model

Edge probability
model

Figure 2: Overview of AdapTracer system

B. Benefit of adaptive coding

When applying arithmetic coding to path profiling, a

native approach is to assign equal probabilities to multiple

out-edges of a CFG node since it is possible to execute each

edge. For the example shown in Fig. 1 (b), we assign equal

probabilities to the two out-edges of node C, i.e., 0.5. For

the execution path ABCBCBCBCBCD, the tracing overhead

is 6 bits (the same as in the previous subsection).

We note that the performance of arithmetic coding highly

depends on the probability model which assigns a probabil-

ity to each of the various symbols [8]. These probabilities

correspond to the edge probabilities for our path profiling

problem. The assignment of equal probabilities leads to

poor performance since it loses the opportunity to reduce

the overhead for frequently executed paths. For example,

if the path ABCBCBCBCBCD is frequently executed, it

is beneficial to reduce the tracing overhead for this path

so that the expected tracing overhead can be significantly

reduced (in other words, the overall cost for tracing multiple

executions can be significantly reduced).

A natural improvement is to assign high probability to

frequently executed edge. For the example shown in Fig.

1 (c), we assign a high probability 0.8 to the frequently

executed edge CB and a low probability 0.2 to the infre-

quently executed edge CD, the tracing overhead can be

reduced to 3 bits for the execution path ABCBCBCBCBCD.

AdapTracer records the edge execution frequencies during

multiple program executions and uses this information to

adaptively change edge probabilities for arithmetic coding.

It is worth noting that both B.L. and PAP are nonadaptive
since they both assign a fixed rule upon executing an edge.

IV. OVERVIEW OF ADAPTRACER

Fig. 2 shows an overview of AdapTracer. We have imple-

mented AdapTracer to profile Android applications. There

166166

are two tools in AdapTracer: ATInstrumentor and TracePars-

er. Section V describes how ATInstrumentor instruments the

APK. Section VI presents the details of how TraceParser

generates the new edge probability according to the restored

paths.

At the PC side, ATInstrumentor analyses the original APK

and generates the instrumented APK. Then, the instrumented

APK is pushed to mobile side. At the mobile side, the

instrumented APK is installed on Android system. The

instrumented Android application runs on Android system

for some time and produces the trace log. After that, the

trace log is pulled from the mobile. TraceParser restores the

paths from the trace log and the edge probability model. The

new edge probability model is generated according to the

restored paths. Finally, there are two copies of the new edge

probability model. One is pushed to the mobile to replace the

instrumented Android application’s edge probability model

file. Another is used to replace the PC side edge probability

model for next path restoring.

V. THE DESIGN OF ATINSTRUMENTOR

ATInstrumentor includes four functions: decompiling AP-

K and smali files analysis, generating instrumentation model,

instrumenting the smali files, recompiling the smali files to

APK.

A. Decompiling APK and analyzing smali files

Step 1: decompiling APK. For the convenience of

analyzing the CFG model of Android application, we first

use apktool [16] to transform the APK into smali files.

Each smali file denotes a class. There are several fields

saving the information about the class. For example, Head
Field saves information of the class name, the super

class name and the corresponding java source file name.

Method Field saves information of the method name,

the input parameters’ type, the return parameters’ type and

the smali code of this method. The construction of Android

application’s CFG model is mainly based on the analysis of

the Method Field.

Step 2: extracting code block information. In this step,

we analyse every method of smali files and extract the code

block information according to the smali syntax [17].

Fig. 3 shows a typical smali code of method field. In

line 1, it declares the start of method field. The method’s

declaration consists of method name, input parameters type,

return parameters type. In this example, method name is

IFSense, input parameter is null and the return parameter

is Z which means boolean type. In line 2, it declares the

number of register used in this method. Smali is a register-

based language and all operations are on registers. In order

to do instrumenting, we increase the number of register. In

line 3, the label .prologue is a keyword that denotes the

start of method content. In line 9, there is another keyword

(i.e., if-eqz) in this instruction. This instruction means

.method private ifSense()Z #method start label
 .locals 2 #number of register

.prologue #method content start label

 .line 22 #line number in jave source
 const/4 v0, 0x1
 .line 24
 .local v0, tempFlag:Z
 if-eqz v0, :cond_0

 .line 25

const/4 v1, 0x1

 .line 27
 :goto_0 #jump label
 return v1

 :cond_0 #UpLine
 const/4 v1, 0x0

goto :goto_0 #DownLine
.end method #method end label

Figure 3: Typical smali code of method field

that if the register v0 equals to zero then the execution flow

jumps to the address labeled with :cond_0. Otherwise the

execution flow moves to next line. Note that the jump among

different executions can be changed by moving the position

of the jump label (i.e., :cond_0). It is benefit for our

instrumenting work without calculating the offset addresses.

According to the smali syntax mentioned above, we can

split the smali codes into different code blocks using the

keywords and the jump labels. For the example shown in

Fig. 3, the label .prologue is a keyword that denotes the

start of method content. From line 2 to line 3 is the first

code block. There are three kinds of code block information

to be recorded. First, the code block id that differentiates

different code blocks. In this example, the code block id is

assigned with zero. Second, the jump label in code block

start line (UpLine for short) and the keyword in code block

end line (DownLine for short). The jump label of the code

block is analyzed from the UpLine and the code blocks

keyword operation is analyzed from the DownLine. If there

is no keyword or jump label in the start line or end line

of the code blocks, the other instructions are recorded. For

the code block zero, the UpLine is recorded as .locals
2 since there is no jump label in UpLine. The DownLine

is .prologue. Third, the lines of UpLine and DownLine

in the smali file. The lines are used for instrumentation. For

the code block zero, the line of UpLine is 2 and the line of

DownLine is 3. After that, we continue splitting the code

block from line 4. The rest code blocks’ information are

shown in Table I. Note that the smali code .line x (where

x denotes the line number) is not recorded as an instruction

since it has no operation.

Step 3: constructing CFG model. There are 3 steps for

167167

Table I: Code block information

blockid UpLine (line) DownLine (line)
0 .locals 2 (2) .prologue (3)
1 const/4 v0, 0x1 (6) if-eqz v0, :cond 0 (9)
2 const/4 v1, 0x1 (12) const/4 v1, 0x1 (12)
3 :goto 0 (15) return v1 (16)
4 :cond 0 (18) goto :goto 0 (20)

constructing CFG model. First, code blocks are modeled

as CFG nodes. Then, we construct the execution flows

among different code blocks according the UpLine and the

DownLine. As shown in Table I, there is an execution flow

from code block 1 to code block 4. Finally, execution flows

among different code blocks are modeled as edges in CFG.

Step 4: classifying main functions and sub functions.
There are four main components in Android system. Each

component responses to user’s interactions using system

default methods called Android life-cycle method [18].

For example, when user starts an Android application, the

Android Activity life-cycle method OnCreate() is executed.

Developers overwrite the Android life-cycle methods to

response to user’s interactions. Thus, the overwritten An-

droid life-cycle methods (the AndroidLifeMethod for short)

can be seen as main functions and all other developers

written methods (the DevpMethod for short) invoked by the

AndroidLifeMethod can be seen as sub functions. In this

way, the AndroidLifeMethod and the related DevpMethod

can be profiled together.

B. Generating instrumentation model

There are two kinds of models to be instrumented in

Android application: the AdapTracer encoder model and

the edge probability model. The AdapTracer encoder model

and the edge probability model are transformed into smali

codes such that they can be invoked by Android application

directly.

Edge probability model. The edge probability model is

a list that has 5 elements: the method name combined with

the class name (i.e., MainActivity IFSense()Z), the edge’s

start code block id, the edge’s end code block id, the edge’s

probability and the edge’s counter. The edge’s counter (ini-

tialized to one usually) is used to record the edge’s execution

frequency. AdapTracer encoder model updates the edge’s

execution frequency using the edge’s counter. We assign

equal probability to multiple out-edges. ∀e ∈ outedge(n),
p(e) = 1

|outedge(n)| . n is a CFG node that has multiple out-

edges. |outedge(n)| means the number of the multiple out-

edges of the CFG node n.

AdapTracer encoder model. There are five methods in

AdapTracer encoder model: Initial(), SetStartCodeBlock(),
ATencoder(), ValueSelect(), OverFlow(). The main method

is ATencoder() that encodes each executed edge. Initial()
initializes the interval variables and declares the current ex-

ecuted method’s name. SetStartCodeBlock() sets the edge’s

Algorithm 1 The AdapTracer encoding algorithm

1: function ATENCODER(Edge E)

2: CodeBlock n = E .getStartCodeBlock()

3: AMlib.Encoder(E)

4: if E .getCounter() + inc > bound then
5: n.ShrinkCounter()

6: end if
7: E .setCounter(E .getCounter() + inc)
8: n.updateOutedgesProbability()

9: end function

start code block id which can be used to construct the

executed edge for ATencoder(). ValueSelect() selects the

minimal value within the interval to denote the executed

path. OverFlow() stores and resets the PathID which is going

to overflow.

Algorithm 1 presents the procedure of AdapTracer en-

coding algorithm. In line 1, the input parameter E is a

class type. E finds the edge related elements from the

edge probability model. getStartCodeBlock() gets the edge’s

start code block. setCounter() and getCounter() are used

to assign and get the edge’s counter respectively. In line

2, the local variable n is a CodeBlock class type. In line

3, AMlib is the arithmetic coding library implemented in

integer [8]. Encoder() encodes the parameter E to a new

sub-interval according to E’s probability. In line 4, inc
and bound are static variables. inc is related to the

speed of matching the edge execution probability. Section

VII shows the relationship between inc and trace size.

bound limits the edge counter’s value to avoid overflow.

When the counter’s value is going to overflow, the method

ShrinkCounter() is called to diminish the value of multiple

out-edges’ counter of the code block n. In line 7, the edge E’s

counter is updated. In line 8, multiple out-edges’ probability

of the code block n are updated.

ValueSelect() is almost the same as the implementation

in arithmetic coding library AMlib. In Encoder() and Val-
ueSelect(), the PathID may overflow when we profile large

program. OverFlow() is instrumented in the instruction of

interval scaling in Encoder() and ValueSelect() [8]. Once

the PathID is going to overflow, current PathID is stored

in list and reset to zero for next encoding. Initial() and

SetStartCodeBlock() are intuitive so we don’t show here.

C. Instrumenting the smali files

Algorithm 2 shows the basic idea of AdapTracer

instrumentation. The instrumentation algorithm for An-

droidLifeMethod and DevpMethod is similar. The difference

is that there is no instrumentation of line 3 and line 14 for

the DevpMethod.

In line 1, the input parameter F is a CFG class type. getEn-
try() and getExit() get the start code block and the exit code

block of current method. getCodeBlockList() gets the list of

168168

Algorithm 2 The AdapTracer instrumentation algorithm

1: function INSTRU(CFG F)

2: CodeBlock entry = F .getEntry()

3: instrumentCodeBlock(entry,“Initial”)

4: for CodeBlock n in F .getCodeBlockList() do
5: int s = n.outEdgeCount()

6: if s > 1 then
7: for Edge e in n.getOutEdgeList() do
8: instrumentEdge(e.getStartCodeBlock(),

“SetStartCodeBlock”)

9: instrumentEdge(e.getEndCodeBlock(),

“ATencoder”)

10: end for
11: end if
12: end for
13: CodeBlock exit = F .getExit()

14: instrumentCodeBlock(exit, “ValueSelect”)

15: end function

all code blocks of current method. From line 2 to line 3,

instrumentCodeBlock() instruments the smali instruction of

invoking Initial() at the address of entry’s DownLine. From

line 4 to line 12, we instrument the SetStartCodeBlock() and

ATencoder() at multiple out-edges of each code block. In line

8, the smali instruction of invoking SetStartCodeBlock() is

instrumented at the address of start code block’s DownLine.

In line 9, the smali instruction of invoking ATencoder() is

instrumented at the address of end code block’s UpLine. In

line 14, the smali instruction of invoking ValueSelect() is

instrumented at the address of exit’s DownLine.

Specifically, for the example shown in Section III. The

interval is first initialized to [0, 1) and the PathID is set to 0.

Each edge is assigned with equal probability (i.e., 0.5). After

the edge CB is executed, CB’s counter is added with one.

Thus, the new CB’s probability is 0.67 and the new CD’s

probability is 0.33. Finally, the value 0.1875 (0.000112)

within [0.1621, 0.1953) is selected as the PathID. The final

probability of CB and CD are 0.75 and 0.25 respectively.

In the first execution, AdapTracer still uses fewer bits than

PAP (i.e., 8 − 6 = 2 bits) since AdapTracer doesnt record

the code block id.

In the second execution of the same path, the interval and

the PathID are initialized the same as the first execution. The

edge probability model is obtained from the first execution’s

results. Finally, we select the value 0.375 (0.0112) within

[0.3321, 0.3925) to denote the same path. Owing to the ben-

efit of adaptive coding, the tracing overhead is significantly

reduced in AdapTracer (i.e., 8− 3 = 5 bits).

D. Recompiling the smali files to APK

After all smali files are instrumented, we use apktool to

recompile the smali files to APK. Then, we can push and

Algorithm 3 The AdapTracer decoding algorithm

Output: corresponding path

1: function ATDECODER(PathId* PI, CodeBlock S ,

CodeBlock E)

2: /*p is used to record the path*/

3: List<CodeBlock> p = new List<CodeBlock>()

4: CodeBlock cur = S
5: Edge eg

6: while cur ! = E do
7: p.append(cur)

8: if cur.isInvokeDevpMethod() then
9: CFG f = cur.getDMCFG()

10: p.append(ATdecode(PI, f.entry, f.exit))

11: end if
12: if cur.outEdgeCount() > 1 then
13: eg = AMlib.Decoder(PI, cur)

14: eg.setCounter(eg.getCounter() + inc)
15: cur.updateOutedgesProbability()

16: cur = eg.getEndCodeBlock()

17: else
18: cur = cur.getOutEdgeList()[0].getEndCodeBlock()

19: end if
20: end while
21: p.append(E)

22: return p

23: end function

install the instrumented APK on mobile phone using adb
[19].

VI. THE DESIGN OF TRACEPARSER

TraceParser restores the paths from the trace log and

the edge probability model. In the first execution, the edge

probability model assigns equal probability to each edge

since we have no idea of the edge’s execution probability.

Then the new edge probability model is generated according

to the restored paths. Two copies of the new edge probability

model are generated. One is pushed to the mobile phone to

replace the instrumented Android application’s edge proba-

bility model. Another is used to replace the PC side edge

probability model for the next path restoring.

A. Analyzing trace log
After using the instrumented Android application for some

time, the trace log is produced. The file format of the trace

log is a list and the tuples of (the method name combined

with the class name, PathIDlist) are stored in the trace log.

The CFG information is obtained from the ATInstrumentor.

We can find the method’s CFG information according to the

the method name combined with the class name.

B. Restoring the paths
After we finding the corresponding method according to

the the method name combined with the class name, the

169169

method’s CFG and the PathIDlist are used in ATdecode to

restore the execution path as shown in Algorithm 3.

In line 1, PI is a pointer parameter that points to address

of the PathID. CodeBlock S and CodeBlock E are the start

code block and the exit code block in current method. From

line 6 to line 20, ATdecoder() restores the path of current

AndroidLifeMethod and all related DevpMethod together.

In line 8, isInvokeDevpMethod() checks whether current

code block’s DownLine invokes the DevpMethod. If so,

ATdecoder() jumps to restore the DevpMethod. The restored

DevpMethod path is appended in p. In line 13, Decoder()
of the arithmetic coding library AMlib is used to decode

the PathID. From line 14 to line 15, the multiple out-edges’

probabilities are updated same as ATencoder(). Then, in line

16, ATencoder() moves to the next code block to continue

the decoding procedure. Finally, the decoding procedure is

finished when it encounters the exit code block. The restored

path is saved in p and returned.

C. Calculating the edge probability model

According to the restored paths, the edge probability

model can be calculated easily. Two copies of the new edge

probability model are generated. One is pushed to the path

of the instrumented Android application. Another is saved

at the PC side for the next path restoring.

VII. EVALUATION

The experiment is running on Google Nexus 4, which is

equipped with the 1.5GHz CPU and the 2GB RAM. A part

of Java Grande Benchmarks (JGF) [20] are transformed into

Android applications for our experimental tests. Different

kinds of functions and CFG structures are contained in

different JGF benchmarks. For example, JGFLoop has lots

of loops and JGFMath has different mathematical operations.

The construction of CFG is based on the analysis of smali

codes which can be obtained through apktool [16]. The

user’s interactions with mobile phone are simulated by

recording a sequence of specific interactive events and replay

on mobile phone.

A. The relationship between the inc and the trace size

Fig. 4 shows the relationship between the inc and the

trace size. The horizontal axis refers to the repeat times

of interactive events. We choose the JGFMath application

which is the most complex application of JGF in this exper-

iment. According to our analysis of smali codes, JGFMath

has 963 code blocks, 120 branches and 30 loops. Each loop

has different mathematical operations, such as absolution,

maximize, minimize, logarithm and etc. We set the inc
to four different values from 1 to 4, which are labeled

with 1-step to 4-step in Fig. 4. From the results, we can

find that the change of trace size is the same as the 3-

step. When inc is bigger, the more times the counter

would need to be narrowed. So the 3-step is used in our

Figure 4: The relationship between the inc and the trace

size

Figure 5: Space cost in JGF benchmarks

AdapTracer. The experimental results also show that the

trace size produced by AdapTracer becomes small following

the program’s execution. In PAP, the trace size is still large

no matter how many times the program executes.

B. Complete tests using modified JGF benchmarks

Fig. 5 - Fig. 7 present the complete experimental results

using JGF benchmarks. Fig. 5 shows the different trace size

Figure 6: Execution overhead in JGF benchmarks

170170

Figure 7: CPU utilization in JGF benchmarks

produced in AdapTracer and PAP while profiling the JGF

benchmarks. The AdapTracer reduces the trace size by 44%

on average compared with PAP.

Fig. 6 and Fig. 7 present the different execution overhead

and CPU utilization among AdapTracer, PAP and the origi-

nal Android applications. The AdapTracer incurs execution

overhead by 10% at most compared to PAP.

VIII. CONCLUSION

This paper presents AdapTracer, a path profiling approach

based on arithmetic coding. There are two salient features

in AdapTracer. First, it is space efficient by adopting a path

profiling algorithm based on arithmetic coding. Second, it is

adaptive by explicitly considering the execution frequency

of each edge. Experimental results show that AdapTracer re-

duces the trace size by 44% on average and incurs execution

overhead by 10% at most compared to PAP.

AdapTracer can reduce the tracing overhead of frequently

long execution path significantly, but the actual space usage

may be the same as the PAP in profiling frequently short

execution path. Namely, for frequently short execution path,

the PathID encoded in PAP may not overflow. No matter

how few bits AdapTracer produces, the actual space usage

is same with PAP. Therefore, our future work will focus

on designing an optimal algorithm to reduce the tracing

overhead of profiling the frequently short execution path.

ACKNOWLEDGMENT

This work is supported by the National Science Foun-

dation of China under Grant No. 61472360, Zhejiang

Provincial Platform of IoT Technology under Grant No.

2013E60005, and Zhejiang Commonwealth Project under

Grant No. 2015C33077.

REFERENCES

[1] M. Tancreti, V. Sundaram, S. Bagchi, and P. Eu-

gster, “TARDIS: Software-only System-level Record

and Replay in Wireless Sensor Networks,” in Proc. of
ACM/IEEE IPSN, 2015.

[2] S. Hao, D. Li, W. G. J. Halfond, and R. Govindan,

“Estimating Mobile Application Energy Consumption

Using Program Analysis,” in Proc. of ACM/IEEE ICSE,

2013.

[3] S. Hao, D. Li, W. G. Halfond, and R. Govindan, “SIF:

A Selective Instrumentation Framework for Mobile

Applications,” in Proc. of ACM MobiSys, 2013.

[4] Y. Liu, C. Xu, and S. C. Cheung, “Characterizing and

Detecting Performance Bugs for Smartphone Applica-

tions,” in Proc. of ACM/IEEE ICSE, 2014.

[5] T. Ball and J. R. Larus, “Efficient Path Profiling,” in

Proc. of ACM MICRO, 1996.

[6] J. R. Larus, “Whole Program Paths,” in Proc. of
ACM/IEEE PLDI, 1999.

[7] B. Li, L. Wang, H. Leung, and F. Liu, “Profiling All

Paths: A New Profiling Technique for Both Cyclic And

Acyclic Paths,” Journal of Systems & Software, pp.

1558–1576, 2012.

[8] A. Said, “Introduction to Arithmetic Coding Theory

and Practice,” Hewlett-Packard Laboratories Report,

Tech. Rep. HPLC2004C76, April 2004.

[9] D. G. Melski, “Interprocedural Path Profiling and the

Interprocedural Express-Lane Transformation,” Tech.

Rep., 2002.

[10] B. Kasikci, T. Ball, G. Candea, J. Erickson, and

M. Musuvathi, “Efficient Tracing of Cold Code via

Bias-Free Sampling,” in USENIX ATC, 2014.

[11] T. Apiwattanapong and M. J. Harrold, “Selective Path

Profiling,” in Proc. of ACM PASTE, 2002.

[12] M. Arnold and B. G. Ryder, “A Framework for Reduc-

ing the Cost of Instrumented Code,” in Proc. of ACM
PLDI, 2001.

[13] R. Joshi, M. D. Bond, and C. Zilles, “Targeted

Path Profiling: Lower Overhead Path Profiling for

Staged Dynamic Optimization Systems,” in Proc. of
ACM/IEEE CGO, 2004.

[14] M. D. Bond and K. S. McKinley, “Practical Path Pro-

filing for Dynamic Optimizers,” in Proc. of ACM/IEEE
CGO, 2005.

[15] T. M. Cover and J. A. Thomas, Elements of Information
Theory, 2012.

[16] “http://ibotpeaches.github.io/apktool/.”

[17] “https://source.android.com/devices/tech/dalvik/dalvik-

bytecode.html.”

[18] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel,

J. Klein, Y. Le Traon, D. Octeau, and P. McDaniel,

“FlowDroid: Precise Context, Flow, Field, Object-

sensitive and Lifecycle-aware Taint Analysis for An-

droid Apps,” in Proc. of ACM PLDI, 2014.

[19] “http://developer.android.com/tools/help/adb.html.”

[20] “http://www.epcc.ed.ac.uk/research/computing/performance-

characterisation-and-benchmarking.”

171171

