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Abstract—Recently, CTC (Cross-Technology Communication),
allowing the direct communication among heterogeneous devices
with incompatible physical layers, has attracted much research
attention. Many efficient CTC protocols have been proposed
to demonstrate its promise in IoT applications. However, the
applications built upon CTC will be significantly impaired
when CTC suffers from malicious attacks such as jamming or
sniffing. In this paper, we implement a reactive jamming system,
JamCloak, that can attack most existing CTC protocols. To this
end, we first propose a taxonomy of the existing CTC protocols.
Then based on the taxonomy, we extract essential features to
train a CTC detection model, and estimate the parameters that
can efficiently jam CTC links. Experimental results show that
JamCloak consistently achieves 94.7% of classification accuracy
on average in both LoS (Line-of-Sight) and NLoS (Non-Line-
of-Sight) scenarios. We also apply JamCloak to attack three
existing CTC protocols: WiZig, Esense and EMF. Results show
that JamCloak can significantly reduce PDR (packet delivery
ratio) by 80.8% on average in practical environments. In the
meantime, JamCloak’s jamming gain is more than 1.78× higher
than the existing reactive jammer. In addition, we propose a
practical countermeasure against reactive jamming attack over
CTC links like JamCloak. Results show that our approach
significantly improves the jamming detection accuracy by 91.2%
on average than the existing approach, and effectively decreases
the reduction in packet delivery ratio to 1.7%.

I. INTRODUCTION

According to Gartner, a well-known IT research and

advisory company, the number of IoT (Internet of Things)

devices will reach 20.4 billion by 2020 [1]. These IoT devices

are envisioned to employ highly heterogeneous wireless

technologies such as WiFi, ZigBee, Bluetooth, etc., causing

difficulties in directly interconnecting these devices due

to completely different PHY-layer technologies. Traditional

approaches require dedicated gateways with multiple radios.

The main drawbacks include: (1) additional costs; (2) addi-

tional traffic flow into and from gateways; and (3) possible

congestion or collision near the gateways.

An attractive approach is to allow Cross-Technology Com-

munication (CTC), i.e., the direct communication among these

heterogeneous devices without a centralized gateway. CTC

has attracted much research attention and many efficient

CTC protocols have been proposed in recent years [2–14].
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Previous studies have demonstrated the promise of CTC in

many IoT applications. For example, using CTC, the Cross-

Technology Interference (CTI) problem can be much more

effectively solved by sharing the spectrum in a TDMA

fashion [2]. Or achieving efficient concurrent transmissions for

different wireless protocols [11]. Or enabling real-time patient

monitoring by combining the ubiquitous deployed WiFi with

the low power Bluetooth (BLE) [6]. CTC, like other wireless

communications, could suffer from malicious attacks such as

jamming [15] or sniffing [16]. Under attacks, the applications

built upon CTC will be significantly impaired, e.g., missing

urgent events or leaking private information. Therefore, to

guarantee the reliable and effective communications over CTC

links, it is very important to study the CTC security (e.g., by

exploring the feasibility of performing powerful attacks).

In this study, we focus on the jamming attack to CTC

and its countermeasures, which is imperative to the practical

applications of CTC. With regard to jamming attacks, we

focus on the reactive jamming attack, i.e., it starts jamming

only when a network activity is observed [17], to achieve a

powerful jamming attack. As opposed to reactive jamming

attacks, proactive jamming attacks continuously sends packets

or random bits on the channel and thus could be easily detected

[17]. For example, in a CSMA network, the carrier sensing

time distribution under normal conditions is known and can

be acquired either theoretically or empirically. Monitoring

for deviations from the benign distribution can be used for

detecting proactive jamming, but not for reactive jamming, this

is because reactive jamming does not occupy the channel [15].

In this paper, we are interested in the following two questions:

(1) Can we design a powerful and generic reactive jamming
attack system over CTC links? (2) What countermeasures
could be taken to secure the CTC system?

Answering the above questions, however, faces several

practical challenges. First, the existing reactive jamming

approach cannot be directly applied into CTC due to the

totally different modulation schemes. For example, FreeBee

[6] modulates CTC bits by shifting the timing of periodic

beacon frames and different timing patterns are demodulated

accordingly. Existing reactive jamming attacks can only jam

the ongoing packets (e.g., jamming WiFi packets using

WiFiJamer [18]) but not the timing patterns, therefore these

attacks are easily bypassed by FreeBee. Second, existing CTC

protocols have used a variety of modulation schemes due

to different application scenarios. For example, WiZig [12]
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can achieve relatively high throughput by mapping different

energy levels to CTC bits, but it can only be used in stationary

scenarios (e.g., monitoring smart home applications [2]) due

to the fixed energy level mapping relationship. FreeBee [6]

can be used in both mobile and stationary scenarios, but it

is only suitable for non-delay sensitive applications due to

its low throughput. It is of importance to design a attacking

system against as many CTC protocols as possible in different

scenarios. However, existing CTC protocols are very different

from each other (e.g., modulating timing patterns or energy

levels), it is thus challenge to devise a generic reactive

jamming system against most CTC protocols.

To address above challenges, we implement a reactive

jamming system, JamCloak, that can attack most existing CTC

protocols. JamCloak consists of two components: detecting

CTC activities and performing jamming attacks. JamCloak

detects CTC activities by classifying the CTC traffic from the

normal traffic. To this end, we first propose a taxonomy of the

existing CTC protocols. We observe that in an energy sensing

based receiver, there are three possible energy characteristics

which can be detected: the intensity of the energy, the duration

of the energy and the gap between the energy. We thus

classify the existing CTC protocols into three categories:

energy level based protocol [7, 12], packet length based

protocol [2, 5] and packet reorder based protocol [6, 9–11].

Then based on the taxonomy, the features of each category

are extracted according to the observation: the existing CTC

protocols constructs the energy characteristics with a large

difference in normal traffic, guaranteeing to ensure the CTC

information can be demodulated efficiently. For example,

Esense [2] modulates CTC information using the packet length

that is unusual in normal traffic. Then the deviations from the

normal distribution can be used to detect packet length based

protocols. Based upon this observation, we extract essential

features and train a decision tree model to classify the CTC

traffic from the normal traffic. In this way, the CTC activities

are thus detected. To perform jamming attacks, we need design

jamming signals that can effectively attack the specific CTC

protocol. JamCloak utilizes k-means to estimate the signal

patterns and then transmits jamming signals.

To counteract reactive jamming attacks over CTC links like

JamCloak, we propose an effective reactive jamming detection

and mitigation approach. Existing approach either uses the

signal strength or location consistency checks to detect reactive

jamming. However, from our experimental results we find that

existing detection metrics (i.e., signal strength or location) can

not effectively detect CTC reactive jamming attacks. Because

most existing CTC protocols rely on the traffic pattern to

convey information and therefore its performance (e.g., packet

delivery ratio) is sensitive to the background traffic density. We

thus propose a new metric that involves in both signal strength

and background traffic density to effectively detect reactive

jamming attacks. Finally, our countermeasure will not incur

in extra overhead because we perform the mitigation approach

only when jamming attacks are detected.

We summarize the contributions of this work as follows:

(a) Energy Level-WiZig (b) Energy Level-B2W2

(c) Packet Length-Esense

t1 t2

(d) Packet Reorder-FreeBee

(e) Packet Reorder-DCTC (f) Packet Reorder-EMF

Fig. 1: Taxonomy of existing CTC protocols.

• To the best of our knowledge, we propose the first

taxonomy of the existing CTC protocols based on the

energy characteristics.

• We implement a reactive jamming system, JamCloak, that

can attack most existing CTC protocols. Results show that

JamCloak can consistently achieve higher than 94.7% of

classification accuracy for a wide SNR range in both LoS

(Line-of-Sight) and NLoS (Non-Line-of-Sight) scenarios.

Extensive experiment results show that JamCloak can

significantly reduce the packet delivery ratio by 80.8%

on average in practical environments. In the meantime,

JamCloak’s jamming gain is more than 1.78× higher than

the existing reactive jammer.

• We propose a practical countermeasure against reactive

jamming attack over CTC links like JamCloak. Results

show that our approach consistently improves the jamming

detection accuracy by 91.2% on average than existing

approach, and effectively decreases the reduction in packet

delivery ratio to 1.7%.

The rest of this paper is organized as follows. Section

II presents the taxonomy of the existing CTC approach.

Section III gives an overview of JamCloak. Section IV and

Section V show the key component of JamCloak. Section

VI presents the evaluation results. Section VII discusses a

practical countermeasure against reactive jamming attack over

CTC links . Section VIII introduces the related work and

finally, Section IX concludes this paper.

II. TAXONOMY OF CTC PROTOCOLS

To achieve direct communication among heterogeneous

devices with incompatible physical layers, sensing the energy

patterns on the channel is a promising way that can be

supported by many COTS devices. Based on the energy

characteristics, we classify the existing CTC protocols into

three categories: energy level based [7, 12], packet length

based [2, 5] and packet reorder based [6, 9–11].
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Energy level based protocol. By changing the transmission

power according to a certain pattern, heterogeneous devices

can sense the pattern of the energy level, and then demodulate

information accordingly. For example, WiZig [12] regulates

the transmission power of each packet with two different

energy levels to modulate CTC bit “0” and “1”. The bit error

rate (BER) can be reduced by repeating each CTC bit multiple

times as shown in Fig. 1(a). The energy level pattern of this

approach is similar to the square wave. In addition to the

square wave, one can also modulate the energy level into other

waveform, such as sine wave. B2W2 [7] encodes CTC bits by

directly adjusting the adjacent packets’ transmission power to

form a sine wave as shown in Fig. 1(b). CTC bits “0” and “1”

are distinguished by changing the frequency of the sine wave.

Packet length based protocol. According to the existing

work [2], the majority of packet length follows a certain

distribution (e.g., a bimodal distribution that either small

packets corresponding to the ACKs, beacons and management

frames. Or they are around 1500 bytes packet corresponding to

the MTU). This observation leaves an opportunity to modulate

CTC bits by transmitting packets with un-regular packet

length. For example, Esense [2] and HoWIES [5] encode

CTC bits by mapping them to an appropriate alphabet set

of packet length. The packet length that does not normally

occur is assigned into the alphabet set, such that the modulated

packets can be distinguished from regular packets and the

BER is reduced. To further enlarge the size of alphabet set,

one can construct a merged packet that exceeds the maximum

packet length (e.g., leveraging A-MPDU standard [19]), while

following the current IEEE 802.11 standard [9].

Packet reorder based protocol. Under normal WiFi traffic,

the transmission gap between data packets does not exhibit

periodicity due to the IEEE 802.11 standard, such as short

inter-frame space (SIFS) and random backoff time. We can

thus modulate CTC bits by reordering packet transmission

time to construct a periodic pattern that can be demodulated by

the receiver. For example, FreeBee [6] modulates one CTC bit

by shifting the timing of periodic beacon frames as shown in

Fig. 1(d). CTC bits “0” and “1” are distinguished by changing

the shifting time. DCTC [10] encodes CTC bits by first setting

the critical time points within a synchronized time windows,

and then shifting data packets to the certain critical time points

that have alternating labels to indicate CTC bits “0” and “1” as

shown in Fig. 1(e). EMF [11] modulates CTC bits by shifting

the packet order to form a unique pattern. Specifically, as

shown in Fig. 1(f), within the two synchronized time window,

the left part with larger packet occupancy ratio denotes CTC

bit “0” and vice visa.

Short summary. To improve CTC throughput while re-

ducing BER, a common feature of existing CTC protocols

is constructing an un-regular energy characteristic that is

distinguished from normal traffic (e.g., un-regular energy

levels, packet length and packet transmission gaps). So, in

principle, the CTC traffic can be detected by monitoring the

deviations from normal traffic, which also poses a big threat

to the existing CTC protocols. In the rest of this paper, we

will detail how to conduct a powerful reactive jamming that

can attack most existing CTC protocols.

Recently, many high throughput CTC protocols have been

proposed [13, 14, 20, 21]. They key idea of these protocols is

that they emulate different wireless protocols at the PHY-layer,

and the desired bits are selected at the application layer, the

CTC receiver can then decode the CTC information without

hardware modifications. However, these high throughput CTC

protocols just reuse the existing wireless protocols and

therefore existing jamming techniques can effectively detect

and jam CTC signals such as WiFiJam [18].

III. CHALLENGES AND SYSTEM OVERVIEW

A. Objectives and Challenges

We study the CTC security by exploring the feasibility

of performing reactive jamming attack over CTC links.

JamCloak only performs jamming attack when there are CTC

activities. To maximize the jamming gain [15], JamCloak

should significantly reduce CTC link quality with only a small

amount of jamming signals. To achieve above goals, we have

to address the following challenges:

C1. How to effectively detect CTC activities without
knowing the settings of the victims? A key characteristic of

reactive jamming attack is performing attacks only when CTC

activities are detected. To detect CTC activities from normal

traffic, it is important to achieve an effective classification of

CTC protocols. However, it is challenging especially without

the prior knowledge of network settings of victims. For exam-

ple, to classify the packet length based protocols, a possible

way is to compare the packet length distribution between

the normal traffic and the received traffic. However, the

packet length distribution of normal traffic varies depending

on WiFi data rates (e.g., higher WiFi data rates would shorten

the sampled length of packets and the distribution is thus

changed). To address this challenge, we transform the problem

of calculating the difference into a problem of inferring the

normal traffic statistics. Then it is possible to extract essential

features without the knowledge of the victims. For example,

the number of high-frequency packet length of the normal

traffic is stable according to prior works [2], we can thus

extract this feature to detect Esense [2].

C2. How to reduce the CTC link quality using a small
amount of jamming signals? To maximize the jamming gain,

the jammer should reduce CTC link quality using as small

amount as possible jamming signals. To this end, the jammer

needs to estimate the parameters of CTC modulation and then

produces an appropriate noise pattern to disrupt the decoding

of the victims, or a faked message that can be decoded by

the victims. However, it is challenging even with the known

CTC categories due to the parameter similarities among the

intra-class modulations. For example, to estimate the critical

time points of packet reorder protocol, DCTC [10], a possible

way is to extract the periodic time points using the fast folding

algorithm [6]. However, since EMF [11] moves packets into a

sub-window to modulate CTC bits, the folding results will also

show a strong periodicity on the positions of reordered packets.
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Fig. 2: Overview of JamCloak.

Therefore, it is challenging to determine which intra-class

modulation should be used for the estimated parameters. To

address this challenge, we utilize k-means to further classify

the intra-class modulation schemes.

B. System Overview

JamCloak is designed as a passive attacker that targets

at the CTC links from WiFi to ZigBee. Its high level

system architecture is shown in Fig. 2. There are two core

steps in JamCloak: detecting CTC activity and performing

jamming attacks. (1) Detecting CTC activity. To detect the

CTC activities, JamCloak continuously samples the received

signal strength (i.e., RSSI) and preprocesses them for feature

extraction. Then the extracted features are fed into the off-

line trained decision tree model to classify CTC traffic from

normal traffic. JamCloak only conveys the classification results

to the next step when CTC activities are detected. Otherwise

it goes back to the first step to sample RSSI. (2) Performing
CTC jamming attacks. Once the CTC activities are detected,

JamCloak will estimate the parameters of the detected CTC

protocol. After that, JamCloak transmits jamming signals over

CTC links according to the estimated parameters.

IV. CTC ACTIVITY DETECTION

To perform a reactive jamming attack over CTC links,

determining whether the CTC is active is an important step.

Thus, efficiently classifying the CTC protocols is the core step

to capture CTC activities. Specifically, there are three steps to

classify the CTC protocols: preprocessing signal, extracting

feature and constructing CTC protocol classification model.

A. Signal Sampling and Preprocessing

We utilize USRP N210 to sample RSSI series at high

frequency about 1MHz [22]. Formally, the sampled RSSI

sequence can be expressed as I[]. Before these sampled signals

can be fed into the feature extraction module, JamCloak needs

to preprocess the signal as follows:

1) Extracting packet level energy: The energy level based

protocols modulate CTC bits at packet level. That is, changing

the transmission power of packets to convey CTC information.

However, the sampled RSSI sequence consists of not only

the energy pattern of packet level, but also in-packet level.

It would have negative impacts on the classification of the

energy level based protocols, especially when WiFi traffic

are modulated by energy level-like modulation (e.g., QAM).

Thus JamCloak first needs to extract the packet level energy

sequence. The high RSSI sampling rate ensures every WiFi

packet can be distinguished (e.g., SIFS is 10us and DIFS

is 50us or 28us [19]), we thus treat the consecutive RSSI

sequence that is larger than the threshold pktThd (e.g., packet

detection threshold) as one packet. The sets of WiFi packet

begin (B) and end (E) positions are:

B= {b|I[b−1]− In < pktThd, I[b]− In ≥ pktThd}
E = {e|I[e]− In ≥ pktThd, I[e+1]− In < pktThd} (1)

Where In denotes the noise floor. For a given transmission, the

maximum amplitude within a packet is constant [23], we thus

extract the maximum RSSI value within a packet to denote

the packet level energy. Then the energy of i-th packet can be

denoted as max(I[B[i]], I[E[i]]). The sets of WiFi packet level

energy are:

SE = {max(I[B[i]], I[E[i]])|0 ≤ i≤ len(B)} (2)

2) Extracting packet length: To analyze the packet length

based CTC protocols, we need extract packet length data as

follows:

SL= {E[i]−B[i]|0 ≤ i≤ len(B)} (3)

We merge adjacent packet length if their arrival time interval

is less than 50μs according to 802.11 standard [19].

3) Extracting packet interval: For packet reorder based

CTC protocols, the interval among data packets has been

changed and is different from normal traffic. Thus we need

to extract packet interval data:

ST = {E[i]−B[i−1]|1 ≤ i≤ len(B)} (4)

B. Feature Extraction

In this section, we will detail how to extract essential

features to classify CTC protocols.

1) Feature for distinguishing energy level based protocol:
Now that we have obtained the energy changes of packet

level, the energy level based protocols can be identified using

the variance of the packet level energy sequence, since the

CTC traffic will have a greater variance than normal traffic.

To reduce the effects of noise, we can filter noise using the

low-pass filtering based approach [24]. We choose the simple

moving average (SMA) approach due to its simplicity and

effectiveness. We thus extract the SMA of packet level energy

sequence for distinguishing energy level protocols: FE = SE.

2) Feature for distinguishing packet length based protocol:
To identify the packet length based protocols, a straightforward

way is computing the distance of packet length distribution

between the received traffic and the normal traffic, since

the packet length of CTC traffic is different from normal

traffic such that the CTC receiver can demodulate CTC bits

via packet length. However, the packet length distribution of

normal traffic will vary depending on the WiFi data rates as

shown in Fig. 3. For the same packet length that is transmitted

at the sender side, the sampled length at the receiver side is

changed with WiFi data rates changing (e.g., sampled length

for 1500 bytes packet changes from 220 samples to 40 samples
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(a) 54M WiFi data rate. (b) 300M WiFi data rate.

Fig. 3: Impact of WiFi data rates on packet length
distribution.

Algorithm 1: Estimating the number of models

Input : Packet length sequence SL[], normalized histogram of
packet length nh[].

Output: The number of models.

1 noiseSet = [];
2 for i=1: i < len(nh): i++ do
3 if nh[i] ≤ noiseThd then
4 noiseSet.append(i);

5 filter the packet length in noiseSet from SL;
6 SL = sort(SL);
7 find best k-means cluster set C using Elbow method;
8 find max number of elements MaxC in cluster set C;
9 find min number of elements MinC in cluster set C;
10 range = MaxC - MinC;
11 for i=0 ; i < len(C) ; i++ do
12 isBorderC = len(C[i])/range < borderThd;
13 drop the cluster C[i] from C if isBorderC is true;

14 return k=len(C);

when WiFi data rates changes from 54Mbps to 300Mpbs). The

deviations from normal traffic are thus challenging to be used

for distinguishing packet length based protocol.

We make the number of models in the packet length

distribution as the feature to identify the packet length based

protocols. The intuition is that the number of models is up to

two for normal traffic. Because packet length distribution of

normal traffic can only be bimodal or unimodal [2] considering

different WiFi data rates. In other words, if the number of

models is greater than two then we determine current traffic

is modulated by packet length based protocols.

Based on observation, we utilize the clustering analysis

based approach to estimate the number of models in the multi-

modal distribution. The algorithm of estimating the number of

models is shown in Algorithm 1. We thus let the number of

estimated models to be the feature for distinguishing packet

length based protocols: FL= k.
3) Feature for distinguishing packet reorder based protocol:

We leverage the intuition that for packet reorder based

protocols, the interval between WiFi packets is changed and

different from normal traffic. According to existing work that

the packet interval of normal WiFi traffic would follow the

Pareto model [25], which cannot be fitted by the modulated

CTC traffic.

Then we use the K-S test (Kolmogorov-Smirnov Test) of

0.95 significance to evaluate the goodness-of-fit of fitting the

received packet interval ST using Pareto model. We divide the

Fig. 4: New CTC protocols.

trace into W equal sized windows and record the number P

of passing K-S test. Then the feature for distinguishing packet

reorder based protocols can be represented as the passing rate

of K-S test: FT = P/W .

C. Classification Model Construction

After extracting all essential features for each CTC pro-

tocol, we then construct the classification model using C4.5

algorithm [26].

To validate the generality of our model, we also design four

new CTC protocols based on the existing CTC protocols. As

shown in Fig. 4, these CTC protocols are described below: (1)

Energy level and packet length (EL+PL): it conveys two bits

of CTC information by changing the energy level and length of

each packet. (2) Packet length and packet reorder (PL+PR):
it conveys two bits of CTC information by varying the packet

length at the critical time points (similar with CMorse [9]).

(3) Energy level and packet reorder (EL+PR): it conveys two

bits of CTC information by varying the transmission power of

packets at the critical time points. (4) Combination of three

(EL+PL+PR): it conveys three bits of CTC information by

changing the energy level and length of each packet at the

critical time points. We also construct the classification model

for all above seven categories using C4.5 algorithm [26]. In

Section VI, we will detail the evaluation setup and results show

that our model achieves high accuracy not only in existing

CTC protocols, but also in new CTC protocols.

V. CTC MODULATION PARAMETERS ESTIMATION

To maximize the jamming gain [15], the jammer should

reduce CTC links quality using as small amount as possible

jamming signals. To this end, the jammer needs to estimate

the parameters of CTC modulation and then produces an

appropriate noise pattern to disrupt the decoding procedure.

However, it is challenging to estimate the parameters even

with the known CTC modulation scheme due to the parameter

similarity among the intra-class modulation.

A. Estimating Parameters of Energy Level Modulation

We assume that the possible modulated energy level patterns

are known (e.g., square wave for WiZig [12] and sine wave

for B2W2 [7]), but the parameters of the specific pattern are

unknown. This assumption is reasonable because it is similar

with the current QAM or ASK modulation that the way of

modulation is known but the parameters (e.g., 16-QAM or

64-QAM) vary with different systems.

Then how to estimate the parameters given a specific signal

pattern? We first segment the received signal based on the
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(a) Folding results for DCTC. (b) Folding results for EMF.

Fig. 5: Normalized folding sum histogram.

Algorithm 2: Estimating the average number of elements

in folding peaks cluster

Input : Fast folding phase histogram phaseh[].
Output: Average number of elements AveE, cluster CT.

1 for i=1: i < len(phaseh): i++ do
2 if phaseh[i]/sum(phaseh) ≤ noiseThd then
3 phaseh[i] = 0; /*filter noise phase.*/

4 OneD = [];
5 for i=0; i < len(phaseh); i++ do
6 /*generate 1 × phaseh[i] data for each phase.*/

OneD.append(repmat(i, 1, phaseh[i]));

7 find best k-means cluster set CT using Elbow method;
8 SumE = 0;
9 for i=0 ; i < len(CT) ; i++ do
10 /* Drop the elements that are lower than borderThd as

Algorithm 1. Collect the number of rest elements into
SumE.*/

11 return AveE = SumE/len(CT), CT;

signal pattern and then utilize clustering analysis to estimate

the parameters. The intuition is that for the energy level

modulation patterns that are used to convey useful CTC

information, they are repeated many times and the energy

level patterns modulated by the same parameter will show

a strong correlation. In other words, it is possible to cluster

the segmented energy level patterns into multiple sets that

have strong correlation. Then for the first k sets containing

the most elements, the energy-level patterns they contain will

most likely be the patterns currently used to modulate CTC

information. To minimize the jamming signal duration, we

select the shortest segmented signal Sg[min] from k sets and

map the RSSI value in Sg[min] to transmission power. The

mapping function is obtained empirically.

B. Estimating Parameters of Packet Length Modulation

Based on the obtained cluster set C from Section IV-B2,

we have the candidate set of modulated packet length. To

extract the CTC modulated packet length, we first filter out

the packet length of normal traffic by the following rules: the

cluster that contains the shortest packet length, and the cluster

that contains one of the packet that occurs merging in Section

IV-A2. Then we choose the shortest packet length pl from

the remaining cluster set. JamCloak transmits jamming signals

with pl ms each at the maximum power.

C. Estimating Parameters of Packet Reorder Modulation

We find that the folding peaks perform different distribution

between DCTC [10] or FreeBee [6] and EMF [11]. As shown

in Fig. 5, it can be seen that EMF often causes a cluster of

folding peaks because of their dense packet reordering, and

DCTC or FreeBee often shows a sparse distribution of folding

peaks because of their critical transmission time points.

Based on the above observation, we use k-means to cluster

the folding peaks data and extract the parameters according to

the number of elements in the resulted clusters. Algorithm 2

shows the details of estimating the average number of elements

AveE in the resulted clusters. If AveE is larger than the

threshold ptThd, then it is highly probable that the modulation

is EMF, because more phase values are put into one cluster

and it reflects the clustered folding peak feature of EMF.

Otherwise, the modulation is FreeBee or DCTC. We first filter

the noise folding data the same as Algorithm 1, then transform

two dimension histogram data into one dimension data (e.g.,

repeating the phase by the folding count). Finally, the average

number of elements AveE and the resulted clusters CT are

returned.

However, we now only know the sub-modulation category

but still do not know the modulation parameters, such as

the sub-window size of EMF [11]. To ensure the successful

jamming attack while reducing the transmission time of

jamming signal, we utilize a conservative strategy to estimate

the parameters. First, the most common phase of each

cluster in CT is extracted to form the phase vector H =
{ps1, ps2, ..., pslen(CT )}. Then, for DCTC or FreeBee (e.g.,

AveE ≤ ptThd), JamCloak continuously transmits jamming

signals with random packet intervals selected from the phase

vector H. For EMF (e.g., AveE > ptThd), given the largest

phase psm in H, JamCloak transmits jamming signals with

psm/2 ms each at the maximum power. In this way, jamming

signals carrying benign but undesirable phases are transmitted

to degrade the ability of decoding CTC information.

D. Timely Reactive Jamming

To successfully perform reactive jamming, we need to

complete the attack within the CTC packet on-air time. We

thus simplify the whole jamming procedure as follows: (1)

Only extract the feature of previous detected modulation

scheme within an enough sliding window size, and (2)

directly select an appropriate attack parameter from the already

estimated range of parameters. To ensure that the jamming

time of JamCloak is sufficient to destroy CTC packets in a

wide range of SNR, we let JamCloak attack last for a relatively

long time (e.g., more than half of the estimated time) in the

case of small SNR.

VI. EVALUATION

A. Experimental Methodology

We implement a prototype of JamCloak on the USRP

N210/GNURadio platform [22] due to its wide range of

transmission power and high RSSI sampling rate (e.g., 1MHz).

To implement existing CTC protocols, we use a USRP and

a TelosB node, a commercial ZigBee platform, as a CTC

transceiver pair at a distance of 1.2m as shown in Fig. 6. We

use the USRP platform to transmit WiFi packets following
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IEEE 802.11 standards to the TelosB node. The WiFi data

rate is set to 54Mbps which is a common setting in current

AP. Note that we assume the rate adaptation function in WiFi

is off, because for CTC protocols using packet length based

modulation, the dynamically changed data rate will violate

the packet length mapping relationship and thus degrade the

performance of packet length based CTC protocols. We select

overlapped channels (i.e., 802.11 channel 11 and 802.15.4

channel 21) to construct the CTC channel.

To generate different SNR range (i.e., -2dB ∼ 10dB), we

use another USRP [22] to generate the Gaussian noise with

different power. Two scenarios are evaluated as follows:

Line-of-Sight (LoS): as shown in Fig. 6, the LoS scenario

is a hallway which is 10.2m long and 1.2m wide. We fix the

distance between JamCloak and the CTC transceiver pair to

7.2m, and the noise generator is placed between them.

Non-Line-of-Sight (NLoS): as shown in Fig. 7, in this

scenario, the jammer and the CTC transceiver pair are

deployed in two adjacent rooms which are separated by a wall.

To evaluate the accuracy and the generality of the classifi-

cation model in JamCloak, we implement three existing CTC

protocols (i.e., WiZig [12], Esense [2] and EMF [11]) that

represent three categories, and four new CTC protocols as

described in Section IV. The symbol error rate of all above

seven CTC protocols is lower than 1% with the parameter

settings in Table 1. The “x pkts” means Esense modulates

CTC bits with x merged maximum packet length (i.e., 1500

bytes). Results are discussed in Section VI-B.

To validate the jamming effectiveness of JamCloak, we also

apply JamCloak to attack above three existing CTC protocols

(i.e., WiZig [12], Esense [2] and EMF [11]). We use the

metric PDR (packet delivery ratio) to evaluate the jamming

impact on CTC links. We use eight consecutive CTC bits

“0” and “1”, respectively, to indicate the beginning and end

of the CTC packet. The CTC packet payload is set to eight

bits (i.e., 24 bits total length), which is a common setting in

coordination or events monitoring applications [4, 6]. There

is no retransmission in the CTC link and a packet is labeled

as corrupted once there is one erroneous CTC bit. We also

compare JamCloak with an existing WiFi reactive jammer

[18] (e.g., WiFiJam for short) in terms of the jamming gain

[15]. The jamming gain is defined according to the existing

work [15]: the inverse ratio of the time of jamming used to

achieve a desired effect with the jammer under consideration

Table 1: Modulation parameter settings.
CTC 

Protocol 
Energy  
Level 

Packet 
Length 

Critical Time 
Interval 

Symbol 
Duration 

WiZig 3dBm, 12dBm normal - 7ms 
Esense 10dBm 2 pkts, 3 pkts - - 

EMF 10dBm normal - 5ms 
EL+PL 3dBm, 12dBm 2 pkts, 3 pkts - 7ms 
PL+PR 10dBm 2 pkts, 3 pkts 2ms 12ms 
EL+PR 3dBm, 12dBm normal 2ms 12ms 

EL+PL+PR 3dBm, 12dBm 2 pkts, 3 pkts 2ms 12ms 

Table 2: Classification accuracy in LoS scenario.
Left:SNR= -2dB, Right:SNR=10dB

WiZig 0.95 0 0 0.01 0 0 0.01 0.01 0.99 0 0 0 0 0 0 0
Esense 0 0.97 0.01 0 0 0 0 0 0 0.99 0 0 0 0 0 0
EMF 0 0 0.96 0 0 0 0 0 0 0 1 0 0 0 0 0

EL+PL 0 0 0 0.92 0.01 0 0.03 0 0 0 0 0.99 0 0.01 0 0
PL+PR 0.02 0.03 0 0 0.91 0 0.05 0 0 0.01 0 0 0.98 0 0.01 0
EL+PR 0.01 0 0.03 0 0.02 0.92 0.01 0 0.01 0 0 0 0 0.99 0 0

EL+PL+PR 0.01 0 0 0.07 0.06 0.08 0.9 0 0 0 0 0.01 0.02 0 0.99 0
Normal 0.01 0 0 0 0 0 0 0.99 0 0 0 0 0 0 0 1

to the time of jamming that is used to achieve the same

effect with the constant jammer. Let tcjam and trjam denote the

jamming time for constant jammer and JamCloak, respectively.

Then the jamming gain is defined as 10log10(t
c
jam/t

r
jam). We

let WiFiJam transmits a short burst once it observes WiFi

activities. Results are discussed in Section VI-C.

B. Classification Accuracy

We evaluate the CTC classification model of JamCloak in

terms of the accuracy and the generality under different SNR.

We apply our model to classify the traffic that contains both

new CTC protocols and existing CTC protocols to validate

the generality. As shown in the confusion matrix Table 2 and

3, in both LoS and NLoS scenarios, JamCloak consistently

achieves high classification accuracy (e.g., 94.7% on average

for existing CTC protocols and 92.4% on average for new

CTC protocols detailed in Section IV) for a wide SNR range

(e.g., from -2dB to 10dB). We only show the confusion matrix

in SNR with -2dB and 10dB due to space limitation. We note

that when the SNR is low (e.g., -2dB), the FP (False Positives)

in the CTC protocol classification associated with energy level

are slightly increased by 4.7%. Because the low SNR makes

the variation of the energy level larger, resulting in a more

ambiguous boundary between the normal traffic and the energy

level modulated traffic. The FP are thus increased. We also

note that the FN (False Negatives) in NLoS scenario are larger

than in LoS scenario (e.g., 2.4%), this might be less CTC

features are captured in NLoS scenario than LoS scenario due

to the wall, resulting in a slight reduction in accuracy.

Table 3: Classification accuracy in NLoS scenario.
Left:SNR= -2dB, Right:SNR=10dB

WiZig 0.91 0 0 0 0 0 0 0 0.94 0 0 0 0 0 0 0.03
Esense 0 0.9 0 0 0.01 0 0 0.05 0 0.94 0 0 0 0 0 0
EMF 0 0.01 0.9 0 0.03 0 0.01 0.03 0 0 0.95 0 0 0 0 0.02

EL+PL 0.01 0 0 0.89 0 0.11 0.04 0 0 0 0 0.92 0.03 0.04 0.02 0.01
PL+PR 0.01 0 0.05 0 0.88 0 0.01 0.02 0 0.06 0 0 0.92 0 0.04 0.01
EL+PR 0 0 0.02 0 0.06 0.88 0.04 0 0.04 0 0.02 0 0 0.92 0.03 0.03

EL+PL+PR 0 0.09 0.03 0.11 0 0.01 0.87 0 0 0 0.03 0.08 0.05 0.04 0.91 0
Normal 0.07 0 0 0 0.02 0 0.03 0.9 0.02 0 0 0 0 0 0.01 0.9
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(a) PDR reduction comparison. (b) Average jamming gain.

Fig. 8: Proof-of-concept for jamming attack in LoS.

(a) PDR reduction comparison. (b) Average jamming gain.

Fig. 9: Proof-of-concept for jamming attack in NLoS.

C. Proof-of-concept for Reactive Jamming Attack

We compare JamCloak with the existing reactive jammer

[18], WiFiJam, in terms of the effects of jamming attack

over three existing CTC protocols (i.e., WiZig [12], Esense

[2] and EMF [11]) in different scenarios. As shown in Fig.

8 and Fig. 9, in both LoS and NLoS scenarios, JamCloak

significantly reduces the PDR by 80.8% on average. In the

meantime, JamCloak’s jamming gain is more than 1.78×
higher than WiFiJam. We note that the jamming effects caused

by WiFiJam to Esense and EMF are subtle (e.g., only 3.2%

and 2.6% of PDR reduction on average, respectively). This

is because the short bursts fail to significantly change the

Esense modulated packet length, nor does it change the energy

occupancy of the EMF modulated window. The reduction of

PDR in LoS scenario is more than in NLoS scenario (e.g.,

3.1% on average) for JamCloak, because with the absence of

the wall, JamCloak can detect and jam more CTC packets. We

also find that jamming gain of JamCloak increases with the

SNR. Because JamCloak estimates the parameters of jamming

signal more accurately at higher SNR, thus more efficient

attacks are enabled using less jamming signals.

D. Reaction Delay for Performing Jamming Attack

We evaluate the reaction delay for performing reactive

jamming in all scenarios and the results are averaged as

shown in Table 4. We can find that for all existing three

implemented CTC protocols, JamCloak can capture CTC

packets and perform attacks in time (e.g., the total jamming

time is lower than CTC packet on-air time tpacket ). To perform

a reactive jamming attack, JamCloak captures enough samples

within the window size tsample, then detects CTC activities

(with the required time tdetect ), and sends a short yet sufficient

jamming burst (i.e., tminjam) to destroy the packet, all while

the CTC packet is being transmitted (i.e., tpacket ). Therefore,

JamCloak performs an effective reactive jamming by meeting

the following time requirement: tsample+ tdetect+ tminjam ≤ tpacket .

Table 4: Reaction delay.
CTC 

Protocol 
Packet In-air 
Time tpacket 

Sampling 
Time tsample 

Detection 
Time tdetect 

Jamming 
Time tjam 

Total 
Jamming  

WiZig 155.9 ms 21 ms <1ms 7~21 ms 28~42ms 
Esense 1568.6 ms 100 ms 25 ms - 125ms+pktlen 

EMF 115.3 ms 21 ms 5 ms 5~15 ms 31~41ms 

E. Impact of CTC Packet Size

In practical scenarios, JamCloak can achieve effective

jamming attacks over a wide range of CTC packet size.

As we have analyzed in Section VI-D, in the case of CTC

packet size of 24 bits, JamCloak meets the time constraint and

achieves effective reactive jamming attacks. When the CTC

packet size is reduced to eight bits, JamCloak is still able

to achieve an effective attack. For example, the CTC packet

on-air time of WiZig, Esense and EMF becomes 51.9ms,

522.8ms and 38.4ms, respectively, which is larger than the

total jamming time of JamCloak (e.g, 28∼42ms, 125ms and

31∼41ms, respectively). However, such a short packet size

(including the packet header and tail) is challenging to be used

in practice, like the transmission of temperature information

in smart home monitoring applications [2].

VII. MITIGATION APPROACH

To counteract reactive jamming systems like JamCloak, we

discuss a practical countermeasure that involves in jamming

detection and mitigation. Our countermeasure will not intro-

duce additional overhead when there is no jamming. Because

our countermeasure switches to the anti-jamming mode only

when jamming attacks or strong interferences are detected.

A. Reactive Jamming Detection

Existing detection approach can be classified into two

types: the physical layer approach [27–29] and the MAC

layer approach [15, 30]. The classification is based on the

implementation layer of the reactive jamming as we detailed

in Section VIII.

Note that JamCloak is the physical layer reactive jamming

attack, because it performs the jamming attacks at the level

of modulation type (e.g., find the optimal jamming signal

patterns) without considering the context of transmission

packets. We thus only consider the detection approach against

physical layer reactive jamming.

Consistency check detection approach [27–29] has been

widely used to detect reactive jamming attacks. There are two

type of consistency checks against reactive jamming: the signal

strength consistency check and the location consistency check.

The basic idea of above two checks is finding the inconsistency

between the measured PDR and the target metrics (e.g, the

received signal strength or the location). For example, if we

measure low PDR and high received packet signal strength or

small distances to the neighbors, then it is most likely that the

node is jammed. However, above two metrics are ineffective

to capture the reactive jamming behaviors over CTC links,

because the PDR of CTC is more sensitive to the background

traffic than the RSSI or the location. We conduct experiments

to validate this observation as shown in Fig. 10. The distance
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(a) Fixed traffic density(3M) with
varying Tx power.

(b) Fixed Tx power(20dBm) with
varying traffic density.

Fig. 10: Jamming detection metrics comparison.

(a) Jamming detection accuracy. (b) Effectiveness of mitigation.

Fig. 11: Jamming mitigation approach evaluation.

of the WiFi transmitter and the ZigBee receiver is set to 5m.

The background traffic is generated using the tool iperf [31].

We generate 3Mbps TCP traffic for obtaining the results

in Fig. 10(a), and set the transmission power of WiFi to

20dBm for obtaining the results in Fig. 10(b). We can find

that under dense background traffic, it is normal that the PDR

is relative low even under high transmission power scenarios,

causing high false positive ratio to existing jamming detection

approaches (i.e., the ratio of determining the normal traffic as

jamming attacks).

We thus propose a new metric considering both RSSI

and background traffic STR (Signal-to-Traffic-Ratio). Note

that other metrics like involving in the distance and the

background traffic can be derived similar with the STR. Given

the observation window W , we let S denote the average RSSI

during the observation window. The ZigBee receiver samples

the background traffic density when there is no CTC traffic. We

detect WiFi packets using RSSI-based approach and calculate

the WiFi packets occupancy ratio T as the background traffic

density. The metric STR can be expressed as: STR = S
T . We

separate the states of the CTC transceivers into 1) Normal, 2)

Jammed and 3) BadChannel. Given the STR metric threshold

THstr and the PDR threshold THpdr, the above states can

be determined by verifying the rules correspondingly: 1)

STR > THstr,PDR ≥ THpdr, 2) STR > THstr,PDR < THpdr
and 3) STR < THstr. The relatively larger STR means the

channel quality is high and the ZigBee receiver should see

a high PDR (i.e., denoted as the Normal state). Otherwise,

the ZigBee receiver is under the reactive jamming attack (i.e.,

denoted as the Jammed state). As for the scenario that the STR

is relatively lower, we denote it as the BadChannel state. When

the Zigbee receiver detects the current state as non-Normal, it

switches to the reactive jamming mitigation mode. Note that

for the BadChannel state, we also let the ZigBee receiver try

to improve its performance by using the mitigation approach.

B. Reactive Jamming Mitigation

To mitigate the strong interference caused by reactive

jamming attacks like JamCloak or high density background

traffic, we consider using channel hopping approach to evade

the jammed or bad channel [15]. Assuming JamCloak can only

sample the CTC pattern for a WiFi channel on which its ratio is

listening, then the candidate hopping channel sequence is WiFi

channel {1,6,11}, and the ZigBee receiver will hop to any one

of the overlapped ZigBee channel. To avoid the predictability

of this hopping pattern, we use a pre-shared secret between

the CTC transceiver.

C. Evaluation of Mitigation Approach

We evaluate the performance of the proposed countermea-

sure in terms of the reactive jamming detection accuracy and

the improvements of PDR. The setup of this experiment is

similar with the previous experiments in Section VI. We only

shows the results of LoS scenario due to space limit. Fig. 11(a)

shows the results of the reactive jamming detection accuracy

between the existing signal strength consistency check based

approach PDRSS [29] and our approach. Results show that

our detection approach consistently improves the accuracy

by 91.2% on average than the existing approach under most

scenarios. As for mitigation efficiency, we average the results

over all traffic density settings as shown in Fig. 11(b). We can

find that our proposed countermeasure can effectively decrease

the reduction of PDR by 1.7%.

VIII. RELATED WORKS

Jamming attack. In general, there are two kind of elemen-

tary jamming attack: proactive and reactive [15]. Proactive

jammer continuously sends random bits or electromagnetic

energy on the channel (e.g., constant jammer [15]). To save

energy, proactive jammer can also emit signals periodically

(e.g., random jammer [15]). Reactive jammer starts jamming

only when it observes a network activity occurred. The reactive

jammer can be further classified into two sub-class based on

the implemented layer: the link layer based (deceptive jammer)

and the physical layer based. For the link layer based jammer,

the jammer can decode the information of received packet and

only jam the valuable packets like ACK to cause the additional

retransmissions [27]. As for the physical layer based jammer,

the jammer decide to jam the channel based the on sampled

RSSI (e.g., higher than a threshold) [28]. It is challenging to

detect reactive jamming [15], because only limited interference

with other nodes is experienced, which minimizes the risk of

exposure [32]. However, achieving reactive jamming attack

over CTC links is challenging due to the totally different

modulation scheme. In this paper, we first propose a taxonomy

of the existing CTC protocols. Then based on the taxonomy,

we extract essential features to train a CTC classification and

detection model, and estimate the parameters that can be used

to efficiently jam CTC links.

Jamming attack detection. Michael et al. [30] propose a

link layer approach to detect reactive jamming attacks over

DSSS-based wireless systems. They take advantage of the
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fact that the first few jamming-free bits are known a priori

and thus can be used to detect jamming attacks. But, current

CTC systems are not DSSS-based and the above approach is

not applicable. Xu. et al. [27] proposed a consistency checks

based approach to detect reactive jamming attacks, and it is

further improved in [28, 29]. It is a PHY-layer based approach

and the basic idea is to find the inconsistency between the

measured PDR and the target metrics (e.g, the received signal

strength or the location). However, above two target metrics

are both not enough to capture the reactive jamming behaviors

over CTC links, because the PDR of CTC is sensitive to the

background traffic but not only the RSSI or the location. In

this paper, we propose a new metric considering both received

signal strength and traffic density to improve reactive jamming

detection accuracy.

Jamming attack mitigation. Many jamming attack mitiga-

tion approach has been proposed [15, 29, 33–35]. Frequency-

Hopping based approach [29, 33] hops to another channel

when jamming attacks are detected. Coding based approach

[15] improves the resilience of jamming by employing forward

error correction code. mobile agent based approach [34]

explores the unjammed area and then designs a new routing

path to improve network level performance. Convert channel

based approach [35] leverages the packet arrival time to

transmit information when under jamming attacks. Note that

CTC is a kind of the convert channel and JamCloak targets

at this communication links. Therefore, this kind of approach

can not be applied.

IX. CONCLUSION

This paper presents JamCloak, the first reactive jamming

system that can attack most existing CTC protocols. We

propose a taxonomy of the existing CTC protocols. Then based

on the taxonomy, we extract essential features to train a CTC

detection model, and estimate the parameters to efficiently

jam CTC links. Extensive results show that JamCloak can

significantly reduce the PDR by 80.8% on average in practical

environments. In the meantime, JamCloak’s jamming gain is

more than 1.78× higher than the existing reactive jamming

attack. In addition, we propose a practical countermeasure

against reactive jamming attack over CTC links like JamCloak.

Results show that our approach consistently improves the

jamming detection accuracy by 91.2% on average than existing

approach, and effectively decreases the reduction in packet

delivery ratio to 1.7%.
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