
Towards Accurate Corruption Estimation in ZigBee
Under Cross-Technology Interference

Gonglong Chen1, Wei Dong∗1, Zhiwei Zhao2, and Tao Gu3

1College of Computer Science, Zhejiang University.
2Computer Science, University of Electronic Science and Technology of China.

3Computer Science and Information Technology, RMIT University.

Email: {chengl, dongw}@emnets.org, zzw@uestc.edu.cn, tao.gu@rmit.edu.au
Abstract—Cross-Technology Interference affects the operation

of low-power ZigBee networks, especially under severe WiFi
interference. Accurate corruption estimation is very important to
improve the resilience of ZigBee transmissions. However, there
are many limitations in existing approaches such as low accuracy,
high overhead, and requirement of hardware modification. In this
paper, we propose an accurate corruption estimation approach,
AccuEst, which utilizes per-byte SINR (Signal-to-Interference-
and-Noise Ratio) to detect corruption. We combine the use
of pilot symbols with per-byte SINR to improve corruption
detection accuracy, especially in highly noisy environments (i.e.,
noise and interference are at the same level). In addition, we
design an adaptive pilot instrumentation scheme to strike a
good balance between accuracy and overhead. We implement
AccuEst on the TinyOS 2.1.1/TelosB platform and evaluate its
performance through extensive experiments. Results show that
AccuEst improves corruption detection accuracy by 78.6% on
average compared with state-of-the-art approach (i.e., CARE) in
highly noisy environments. In addition, AccuEst reduces pilot
overhead by 53.7% on average compared to the traditional
pilot-based approach. We implement AccuEst in a coding-based
transmission protocol, and results show that with AccuEst, the
packet delivery ratio is improved by 20.3% on average.

I. INTRODUCTION

The recent years have witnessed the unprecedented prolifer-
ation of smart wireless devices. A number of radio technolo-
gies exist such as WiFi, Bluetooth and ZigBee for applications
with different requirements in throughput, timeliness and
energy-efficiency. Since these radio technologies operate on the
same 2.4GHz ISM band, it inevitably causes Cross-Technology
Interference (CTI).

Prior studies have shown that ZigBee packets may suffer
from severe corruption with WiFi interference [1, 2]. Many
solutions have been proposed to improve the resilience of
ZigBee transmission by first estimating corruptions and then
recovering corrupted packets. On successfully identifying
corruptions in a packet received, the receiver may be able
to recover partial packet by requesting the retransmission of
corruptions [3], enable whole packet recovery by combining
the correct parts of multiple partial packets [4, 5], or
recover more potential corrupted packets with the estimated

∗Corresponding author. We gratefully acknowledge our shepherd Wan Du
and the ICDCS reviewers for their insightful comments. This work was
supported in part by the National Science Foundation of China under Grant
No. 61472360, National Key Basic Research Program of China under 973
Grant No. 2015CB352400, CCF-Tencent Open Research Fund, Zhejiang
Provincial Key Research and Development Program No. 2017C02044, and the
Fundamental Research Funds for the Central Universities No. 2017FZA5013.

corruptions (e.g., Reed Solomon code) when a packet is
encoded with forward error correction (FEC) [6, 7] or rateless
coding [8, 9]. All these methods rely heavily on the accuracy
of corruption estimation.

Several corruption estimation methods exist in the literature
[3, 10–14]. The PHY-based approach (e.g., PPR [3], AccuRate
[10]) relies on the detailed PHY-layer information, e.g.,
Hamming distance between chip sequences or dispersion in the
constellation space. Such an approach, albeit accurate, cannot
work on COTS ZigBee devices since the detailed PHY-layer
information is simply inaccessible. The pilot-based approach
(e.g., ZipTx [11], LEAD [12]) relies on the known pilot
symbols for coarse-grained BER (Bit Error Rate) estimation.
Such an approach suffers from the inherent tradeoff between
accuracy and overhead: if we instrument a small number of
pilots, the accuracy will be low; otherwise, the packet overhead
will be high. In general, this approach, when used alone, is
insufficient to identify corruption in a packet. All the existing
methods rely on hardware modification or incur large packet
overhead.

Recently, in-packet RSSI sampling has accelerated much
research interest [15–21]. In-packet RSSI sampling, working
at the maximum sampling rate, provides fine-grained per-byte
RSSI values for a packet. A key benefit of this technique is
that it can be directly supported by COTS ZigBee devices
without hardware modification. The fine-grained RSSI time
series, provided by in-packet RSSI sampling, have been used in
several works to classify interference or corruption estimation
in the presence of WiFi interference. The in-packet RSSI-based
approach such as REPE [15] and CARE [16] can work on
COTS ZigBee devices with no packet overhead. However,
they still suffer from low accuracy, especially in a common
industry environment [22, 23] with high noise (i.e., noise and
interference are at the same level as we analyzed in Section
III). Achieving accurate corruption estimation in the in-packet
RSSI-based approach is challenging. A straightforward idea is
to sample noise level and explicitly mitigate the impact of noise
power. However, WiFi interference is time-varying, hence it is
not enough to distinguish noise from interference by sampling
noise power. Our experimental study shows that existing in-
packet RSSI-based approaches do not perform well in a highly
noisy environment.

To address the above challenge, in this paper we propose
a novel approach named AccuEst, to Accurately Estimate
corruptions of ZigBee packets with WiFi interference in a
highly noisy environment. We discover an interesting noise-

2017 IEEE 37th International Conference on Distributed Computing Systems

1063-6927/17 $31.00 © 2017 IEEE

DOI 10.1109/ICDCS.2017.251

1242

2017 IEEE 37th International Conference on Distributed Computing Systems

1063-6927/17 $31.00 © 2017 IEEE

DOI 10.1109/ICDCS.2017.251

1239

2017 IEEE 37th International Conference on Distributed Computing Systems

1063-6927/17 $31.00 © 2017 IEEE

DOI 10.1109/ICDCS.2017.251

425

resistance characteristic of link-layer pilot symbols which are
known to both senders and receivers. This information can
be used to indicate whether a symbol in a received packet is
corrupted or not, and hence it can guide us to train a model to
detect corruption. The PHY-layer information (i.e., per-packet
RSSI, per-packet LQI, and per-byte RSSI values) offered by
COTS ZigBee devices can be regarded as the input feature of
the model. In particular, the per-byte RSSI values can capture
the impact of interference (e.g., burstiness, fluctuations) in a
fine-grained manner. However, a direct combination of PHY-
layer information and link-layer information may not work
effectively. The reason is that the PHY-layer information only
reflects the absolute value of interference strength, and it is
not enough to be used directly for corruption detection. We
thus propose a new PHY-layer feature, per-byte SINR (Signal
to Interference and Noise Ratio) deriving from per-byte RSSI
values, to better indicate byte-level corruptions. In this way, we
can achieve better corruption estimation by combining cross-
layer information.

While combining cross-layer information looks promising,
network throughput may degrade since the link-layer in-
formation (i.e., pilot symbols) increases packet redundancy.
Directly reducing the amount of the link-layer information,
however, may decrease corruption estimation accuracy. It is
thus challenging to ensure high corruption detection accuracy
while minimizing the overhead. To further investigate this
issue, we first conduct experimental studies as shown in
Section IV-C. We observe from our experimental results that
when the interference pattern (i.e., burstiness, fluctuation) is
not obvious, the low interference power is highly possible
to be recorded as noise power, and this is essential to the
calculation of per-byte SINR. As a consequence, accuracy is
decreased due to the interfered per-byte SINR and more pilot
symbols are needed to quickly update the model to compensate
for the interfered PHY-layer feature. On the other hand, when
the interference pattern is obvious, few pilot symbols are
needed since the PHY-layer feature can be inferred accurately.
Motivated by the above observations, we design an interference
pattern-aware approach to strike a good balance between
accuracy and overhead.

We implement AccuEst on TinyOS 2.1.1 with TelosB
nodes and evaluate its performance in different environments.
Our results show that AccuEst consistently achieves better
performance than the state-of-the-art approach, i.e., CARE.
Specifically, the improvement of corruption detection accuracy
is obvious when interference level and noise level are close
(i.e., 78.6% on average). AccuEst reduces pilot overhead by
53.7% on average compared to the traditional pilot-based
approach while achieving the equivalent relative error of
SER (Symbol Error Rate) estimation. To demonstrate the
effectiveness of AccuEst in real scenarios, we implement
AccuEst in a coding-based transmission protocol. The testbed
results show that with AccuEst, the packet delivery ratio is
improved by 20.3% on average.

The contributions of this paper are summarized as follows.

• We theoretically analyze and identify the limitations
of existing in-packet RSSI-based corruption estimation
approaches in highly noisy environments (i.e., noise and
interference are at the same level).

• We propose a novel corruption estimation approach,
which exploits cross-layer information and a learning-

based model to achieve high accurate corruption prediction.
• We design an interference pattern-aware approach to min-

imize overhead while ensuring high corruption detection
accuracy.

• We implement AccuEst on the TelosB platform with
TinyOS 2.1.1 and evaluate its performance extensively.
The results show that AccuEst significantly improves the
corruption detection accuracy compared with the state-of-
the-art approach in in highly noisy environments.

The rest of this paper is organized as follows. Section II
introduces the related work. Section III presents the limitation
of prior work. Section IV shows the design of AccuEst. Section
V presents the evaluation results. Section VI discusses the
generality of AccuEst, and finally, Section VII concludes this
paper and discusses future research directions.

II. RELATED WORK

In this section, we discuss the related work. We first
introduce existing corruption estimation (i.e., PHY-based
approach which requires hardware modification, and pilot-
based approach which requires known pilot symbols). We then
present the in-packet RSSI sampling technique and discuss
how the per-byte RSSI time series can benefit the upper-layer
protocol design.

A. PHY-based Approach
The detailed PHY-layer information provides accurate hints

and it has been utilized by much prior works to identify erro-
neous bits [3], estimate BER [10, 14] or classify interference
[5, 24].

PPR [3] implements an expanded PHY-layer interface called
SoftPHY that provides a detailed PHY-layer hint about the
PHY’s confidence in each bit it decodes. Essentially, this
confidence is derived from the Hamming distance between
the actual received chip sequence and decoded chip sequence
corresponding to a valid symbol. The higher layer can then
use these hints to identify incorrect bits and request the
retransmission of only the selected portions of a packet where
there are bits likely to go wrong. AccuRate [10] exploits the
dispersion of the symbol constellation space to compute the
optimal bit rate. Smaller dispersion means better link quality
which is capable of supporting higher bit rates. By comparing
these dispersions to the permissible dispersions at different
bit rates, AccuRate derives the maximum rate to be used for
packet transmission.

Other than the above works which directly estimates
corruptions, some works accurately detect interference source.
DoF [24] utilizes Fast Fourier Transform (FFT) to extract the
repeating hidden patterns of different wireless protocols and
then classifies interference sources according to the extracted
patterns. CrossZig [5] exploits the variations in demodulated
results of signals (i.e., soft values) for interference type
detection (i.e., Intra- and Cross-Technology Interference)
and then enables an appropriate mechanism to recover the
corrupted packet.

Different from the above approaches which require modi-
fication in hardware, our approach works directly on COTS
ZigBee devices with no hardware modification.

B. Pilot-based Approach
Pilot symbols/bits are the symbols/bits which are known

before decoding and can be used to estimate BER [11, 13, 25]

12431240426

(Bit Error Rate) or assist channel decoding [12].

LEAD [12] is a cross-layer solution that improves the
performance of existing channel decoders. It extracts the fixed
or highly biased header fields as the pilot bits and spreads
the pilot bits over the whole packet to guide packet decoding.
SmartPilot [13] further extracts more pilots from both detailed
PHY-layer information and upper layer protocol headers to
estimate BER and then picks a good data rate. However,
they both require hardware modification, limiting their use on
existing ZigBee devices.

ZipTx [11] is a software-only approach for recovering partial
packets. It evenly instruments the known pilot bits into a packet
transmitted from sender. The receiver then uses these known
pilot bits to estimate the overall BER of the packet. High BER
packets will be requested for retransmission while low BER
packets will be decoded by error correcting codes.

The pilot-based approach does not require hardware modifi-
cation. However, they only provide coarse-grained information
which is insufficient to localize corruptions precisely. In
addition, they incur relatively large packet overhead due to
pilot symbols. To address this issue, we design an interference
pattern-aware pilot instrumentation method to strike a good
balance between accuracy and overhead.

C. In-packet RSSI Approach
In-packet RSSI sampling has been recently proposed to

provide fine-grained per-byte RSSI values for a packet, and
it has accelerated a lot of interesting works [15–21, 26].

SoNIC [20] utilizes the key insight that different interferers
disrupt individual 802.15.4 packets in different ways that can
be detected by sensor nodes. Then the distinct patterns, e.g.,
variances of in-packet RSSI series, link quality indication and
etc., can be used to classify different interference sources (i.e.,
Bluetooth, WiFi, microwave oven). Different from SoNIC,
TIIM [19] skips the classification step and directly builds
a decision tree classifier to learn under which interference
patterns a particular mitigation scheme empirically achieves
the best performance. The key idea of Smoggy-Link [21] is
based on the observation that link quality is highly related to
interference. It therefore maintains a link model to trace the
relationship between interference and link quality of sender’s
outbound links. With such a link model, Smoggy-Link can
obtain fine-grained spatio-temporal link information to perform
adaptive link selection and transmission scheduling.

REPE [15] utilizes the observation that RF interference
typically manifests as an additive increase in RSSI [27]. It
samples the RSSI values per symbol with a high-resolution
hardware timer (i.e., 62.5kHz). By calculating the difference
between RSSI[i] (i.e., the combination of ZigBee signal and
WiFi interference) and RSSIbase (i.e., ZigBee signal strength
without interference), REPE utilizes a single threshold-based
approach to detect incorrect symbols. CARE [16] also exploits
the in-packet RSSI time series to compute the corruption level
of a packet. The corruption estimation component in CARE
achieves significantly improvement compared with REPE due
to careful selection of two thresholds. Then an adaptive coding
scheme which is based on the corruption level is designed to
retransmit the redundancy information.

However, as shown in Section III, the difference between
RSSI[i] and RSSIbase suffers inevitable errors in a highly
noisy environment (i.e., noise and interference are at the same

level), and hence it degrades corruption detection accuracy.
Different from REPE and CARE, our approach introduces a
more accurate indicator per-byte SINR from the per-byte RSSI
time series to detect corruption. In addition, we use the link-
layer information (pilot symbols) to further improve corruption
detection accuracy.

III. LIMITATION OF IN-PACKET RSSI APPROACH

In-packet RSSI values have been used in prior work such as
CARE and REPE for corruption estimation. Assume we have
obtained an array of RSSI (Received Signal Strength Indicator)
values, RSSI[n], which corresponds to a received packet of n
bytes. Each element in the array RSSI[i] (1 ≤ i≤ n) indicates
the RSSI in dBm for the i-th byte in the received packet.

Both CARE and REPE detect corrupted bytes by using
the difference between RSSI[i] and RSSIbase =mini (RSSI[i])
as an indicator. RSSIbase roughly represents the ZigBee
signal strength without interference, while RSSI[i] represents
the combination of ZigBee signal and WiFi interference. If
the RSSI difference, ΔRSSI[i], exceeds a threshold, it is
highly probable that there exists a high interference and the
corresponding byte is corrupted. We argue that ΔRSSI[i] may
not be a robust indicator in some circumstances.

Before we perform a detailed analysis, we first introduce
the following notations and formulas:

• The received power for the i-th byte is denoted as PmW [i]
which can be split into three components: PSmW [i], P

N
mW [i],

PImW [i], representing the powers of signal, noise, and
interference, respectively. We assume that the powers are
additive [27], i.e., PmW [i] = PSmW [i]+P

N
mW [i]+P

I
mW [i].• The power in mW (PmW) can also be expressed in dBm

(PdBm) (and vice versa) by the following formula:
PdBm = 10log10PmW (1)

ΔRSSI[i] as an indicator. Based on the above notations,
we can compute ΔRSSI[i] as follows:

ΔRSSI[i] =RSSI[i]−RSSIbase
=10log10(P

S
mW [i]+P

N
mW [i]+P

I
mW [i])

−10log10(P
S
mW [i]+P

N
mW [i])

=10log10

(
PSmW [i]+P

N
mW [i]+P

I
mW [i]

PSmW [i]+P
N
mW [i]

)

=10log10

(
1+

PImW [i]
PSmW [i]+P

N
mW [i]

)
(2)

In both CARE and REPE, the byte corruption probability Pre
has positive correlation with ΔRSSI[i], i.e., Pre increases when
ΔRSSI[i] increases.

Standard indicator. In reality, a standard indicator for
correct transmission is the signal to interference and noise
ratio, denoted as SINR, which can be computed as follows:

SINRdB[i] =10log10

(
PSmW [i]

PImW [i]+P
N
mW [i]

)
(3)

The byte corruption probability Pre has negative correlation
with SINRdB[i].
Analysis. When PNmW [i] = 0, the first indicator correctly

identifies corruptions since Pre is large when ΔRSSI[i] is
large (high interference). However, when PNmW [i] increases to
a large value comparable to PSmW [i] (or PSmW [i] decreases to a
small value comparable to PNmW [i]), there will be inconsistency
between the two indicators. Supposing PNmW [i] increases to a
large value, the ΔRSSI[i] will regard the byte as correct since

12441241427

 A

B C

D

Fig. 1: Corruption detection using different indicators.

large noise makes this indicator small. On the other hand, the
standard SINR indicator will regard the byte as erroneous since
large noise makes SINR small.

To better understand the above description, without loss
of generality, we assume PSmW [i] as 1 mw and simplify
the standard indicator and the ΔRSSI[i] indicator to their
antilogarithm part. Then, according to the standard indicator,
we regard the byte as correct when the simplified standard
indicator is larger than the threshold V :

1

PImW [i]+P
N
mW [i]

>V (4)

According to the ΔRSSI[i] indicator, we regard the byte as
correct when:

1+
PImW [i]

1+PNmW [i]
< Z (5)

Where Z is the threshold for determining the correct byte.
We plot Fig. 1 to clearly see the inconsistency. The quadrant
is split into four regions by above two conditions. Regions C
and D satisfy the condition (4), while Regions D and B satisfy
the condition (5).

When PNmW [i] increases to a large value comparable to PImW [i]
(e.g., in Region B), the ΔRSSI[i] indicator classifies the byte as
correct since large noise makes this indicator small, however,
the standard indicator SINR will classify the byte as erroneous
since large noise makes SINR small. Similarly, for Region C,
since the ratio of PImW [i] and PNmW [i] is large but the sum of
them is small, we would make two opposite detection results
using the ΔRSSI[i] indicator and the standard indicator SINR.

It is worth noting that the inconsistency in Region C can
be eliminated by selecting two appropriate thresholds Z and
V . However, since Z−1 and 1/V are both larger than 0, the
inconsistency between the ΔRSSI[i] indicator and the standard
indicator SINR always exists in Region B.

As a conclusion, the ΔRSSI[i] indicator cannot identify
corruptions when noise and interference are at the same level.

IV. DESIGN

We describe the key idea in our approach as follows. We
combine the pilot symbols with the accurate SINR indicator
aiming to significantly improve the corruption detection
accuracy, especially when noise and interference are at the
same level. To achieve this, we first extract useful features from
cross-layer information in a packet, i.e., in-packet RSSI time
series from the PHY-layer and pilot symbols from the link-
layer, to build a regression-based model. We then automatically
train this model using known pilot symbols.

Fig. 2 shows the overall architecture of AccuEst. It sits

Network Layer

Network Layer

MAC Layer

Network Layer

MAC Layer

Adaptive Pilot
Adding Mod.

Interference
Pattern

Corruption
Detection

Interference
Pattern Detection

ACK
Timeout

Upper-layer
Protocol

AccuEst

Sender Receiver

Fig. 2: The AccuEst architecture
between the MAC layer and the network layer. At the
sender side, AccuEst instruments the pilot symbols evenly
into the packets. The number of pilot symbols is computed
according to the incoming events. (1) When the sender receives
ACK/NACK packets carrying the information of interference
pattern, AccuEst infers the number of pilot symbols according
to interference pattern. (2) When the ACK timer times out,
AccuEst delivers the event to the upper-layer protocol. At the
receiver side, when a packet is received, the receiver needs to
complete two tasks: (1) if this packet is corrupted, the receiver
detects corruptions and deliveries the results to the upper layer
protocol. (2) No matter this packet is corrupted or not, the
receiver calculates the interference pattern of this packet and
transmits ACK/NACK packets that carries the interference
pattern to the sender.

Implementing the above idea has the following three
challenges:

• Which features are essential to corruption detection?
• How to build the model and automatically train the model?
• How to design an adaptive approach to instrument pilots?

In the rest of this section, we detail the design of AccuEst
to address above challenges.

A. Feature Extraction
We first introduce the information that can be obtained

directly from the PHY-layer and the link-layer, and then show
how to extract features that are most relevant to corruption
detection.

1) PHY-layer feature
Per-packet RSSI. It denotes the average RSSI value for the

first eight symbols in a received packet. It only reflects the
signal strength of the packet header, therefore it has limited
capacity to detect corruptions in the whole packet.

Per-packet LQI. The link quality indication (LQI) is a
characterisation of the quality of a received packet. CC2420
provides an average correlation value based on the first eight
symbols to denote LQI. LQI has been used to detect the
sudden changes in the packet header caused by interferers
[20]. However, LQI alone provides limited information for
determining erroneous bytes in the rest of the packet.

In-packet RSSI time series. We modify the radio driver
in TinyOS 2.1.1 to sample RSSI at a rate of about one sam-
ple/byte. Our modified driver starts sampling RSSI whenever
a SFD (Start Frame Delimiter) interrupt signals an incoming

12451242428

(a) The noise power is -95dBm. (b) The noise power is -85dBm.

Fig. 3: illustration examples of corruption detection under
different noise power using the standard indicator and the
ΔRSSI indicator, respectively.

packet, and it keeps sampling until the last byte of the
packet is received. Prior works [15, 16] simply utilize the
difference between RSSI[i] of the i-th byte and RSSIbase (i.e.,
ZigBee signal strength without interference) as an indicator
to detect corruptions. However, as we have shown in Section
III, this indicator is not robust especially when noise and
interference are at the same level. Fig. 3 presents the examples
of detecting corruptions using the standard indicator and the
ΔRSSI indicator. For the standard indicator, we regard the i-th
byte as correct when SINR[i] of the i-th byte is larger than 1.
For the ΔRSSI indicator, we use the threshold in CARE that
when ΔRSSI[i] of the i-th byte is lower than 2, we determine
the i-th byte as correct.

When the interference and noise level are relatively low (i.e.,
as shown in Fig. 3-(a)), there are no corrupted bytes and both
the standard indicator and the ΔRSSI indicator can accurately
identify the correct bytes. When the noise power increases
from -95dBm to -85dBm, the packet is corrupted as shown in
Fig. 3-(b). The grey region denotes the erroneous bytes that
are detected correctly using the corresponding indicator. We
cannot identify any erroneous bytes using the ΔRSSI indicator
while most of the erroneous bytes are correctly detected using
the standard indicator.

Therefore, we carefully select the per-byte SINR as our
indicator. To infer SINR[i] of the i-th byte, besides the in-
packet RSSI time series, AccuEst samples the noise power as
soon as the link turns idle after packet reception (i.e., RSSIn).
Let PNmW and PSmW denote the noise and the 802.15.4 signal
power, respectively. The interference power of the i-th byte is
PImW [i], then SINR[i] can be computed as follows.

PNmW = 10RSSIn/10

PSmW = 10RSSIbase/10 −PNmW
PImW [i] = 10RSSI[i]/10 −PSmW −PNmW
SINR[i] = 10log10

PSmW
PNmW +P

I
mW [i]

(6)

Where RSSIbase is the minimum RSSI value during packet
reception.

In summary, the PHY-layer feature vector Xi of the i-th byte
is expressed as follows.

Xi = [SINRi,LQI,RSSIpkt] (7)

2) Link-layer feature
Pilot symbols. Pilot symbols are the symbols which are

known before decoding. They provide a noise-resistance
information about whether the symbol is correct or not in a
received packet. In the rest of this paper, we will use pilot
symbols and pilots interchangeably. Combining the link-layer
information and the PHY-layer feature makes it possible to
training our model (as we shown in Section IV-B).

B. Combination of Cross-layer Information
Suppose we have obtained the L pilot symbols from the

received packet. Then our goal is: given the link-layer pilot
symbols and the PHY-layer feature in a sliding window with
size W , train and automatically update a model to determine
the corruption probability of the bytes. Formally, the j-th
training set can be expressed as follows.

TrainS j = [PKTj,PKTj−1, ...,PKTj−W+1] (8)

Where PKTj is comprised of the PHY-layer feature as
follows.

PKTj = [X
j

1 ,X
j

2 , ...,X
j
L] (9)

Where X ji denotes the i-th pilot PHY-layer feature of the

j-th packet (i.e., SINRji ,LQI
j,RSSI jpkt). In order to train the

corruption detection model, we have the following label for
the i-th pilot symbol in j-th packet.

P(Y = 1|X ji) =
{

0,correct
1,erroneous

(10)

Where Y = 1 denotes the byte is erroneous. If the pilot
symbol is erroneous then we set P(∗) = 1, meaning that the
error probability of the byte is 1 and vice visa.

The corruption detection model should be lightweight to run
on resource-constrainted sensor node. Therefore, we utilize
the Logistic Regression (LR) classification model to detect
corrupted bytes. LR has been utilized by much prior works
[28, 29] and it is easy to implement on sensor nodes.

The LR classifier can be expressed as:

P(Y = 1|X ji) =
1

1+ exp(− f (X ji))
= hβ (X

j
i)

P(Y = 0|X ji) =
exp(− f (X ji))

1+ exp(− f (X ji))
= 1−hβ (X

j
i)

(11)

Where P(Y = 1|X ji) and P(Y = 0|X ji) denote the erroneous

and correct probability of the byte, respectively. f (X ji) = β0+

∑Mk=1 βkXk andM is the number of features. In order to train the
parameters β (i.e., [β0, ...,βM]), we maximize the log likelihood
below:

J(β) =
L

∑
i=1

Y ji log(hβ (X
j
i))+(1−Y ji)log(1−hβ (X

j
i)) (12)

We then apply stochastic gradient descent (SGD) to update
parameters β . SGD is an online algorithm that operates by
repetitively drawing a fresh random sample and adjusting the
weights on the basis of this single sample only [29]. Then the
gradient of the i-th pilots of the j-th packet for the feature

SINRji (i.e., the k-th feature) can be expressed as:

∇Jk(β) = (Y
j
i −hβ (SINR

j
i))SINR

j
i (13)

The update procedure of β based on gradient is shown as
follows:

βk← βk+λ∇Jk(β) (14)

Where λ is learning rate and we set λ to 0.01 in our evaluation.

12461243429

C. Adaptive Pilot Instrumentation
We now further improve corruption detection accuracy by

combining the pilot symbols with the PHY-layer feature.
However, instrumenting pilots would also degrade network
throughput. Therefore, how to minimize the number of
instrumented pilot symbols while keeping high accuracy of
corruption detection is a challenging issue.

To better understand the benefits of combining the pilot
symbols with the PHY-layer features, we first conduct an
experimental study to show the impact of different interference
patterns on the accuracy of inferred PHY-layer features. The
details of experimental settings are similar to that in Section
V, except that an extra node is bounded with the receiver
node and is enabled always-on RSSI sampling to obtain the
ground truth of PHY-layer features. Our approach can detect
the potential corrupted symbols, which CARE cannot identify,
despite of any noise power as shown in Section IV-A. We
thus only focus on four different interference power and
traffic patterns (as shown in Table 1). The noise power is
generated (i.e., -90dBm) using USRP [30]. Before analyzing
experimental results, we introduce the following features to
quantify interference patterns:

PAPR. It is a common measurement for the fluctuation of
signal power and can be used to distinguish different PHY
modulation techniques. We apply PAPR to analyze the WiFi
interference power level. As shown in previous studies [17],
802.11g/n have a large PAPR (≥ 1.9) while ZigBee has a
relatively small PAPR (≤ 1.3) because it employs the single-
carrier modulation technique. Suppose the normalized RSSI
sequence of an N-byte packet is nRSSI, the PAPR of this packet
can be calculated as:

PAPR=
max{nRSSI[i]2|0 ≤ i≤ N}

nRSSI2
(15)

where nRSSI2 denotes the average of the squared values of the
elements in the normalized RSSI sequence nRSSI.
Bursty level. Error burst means a sequence of corrupted

symbols that may contain subsequences of at most four
consecutive correct symbols in a packet. Prior work has
observed that 802.15.4 corruptions under WiFi interference
are highly bursty and the bursty density is utilized to classify
different interference type [1, 20, 31]. We use a threshold-
based approach to identify the start and the end points of each
burst segment. The threshold thd is set to 2dB according to
[20]. Given the RSSI series RSSI[i], the sets of start (S) and
end (E) position can be expressed as follows.

S= {s|RSSI[s−1]−RSSIbase < thd,
RSSI[s]−RSSIbase ≥ thd}
E = {e|RSSI[e]−RSSIbase ≥ thd,
RSSI[e+1]−RSSIbase < thd}

(16)

The bursty level can be computed as the average bursty length.

Fig. 4 shows relative errors of estimating PHY-layer features
under four different interference scenarios (as shown in Table
1). The label SINR-xburst means the feature per-byte SINR is
evaluated under bursty level x. Only the results of bursty levels
1, 10, 11, 16 are shown due to space limitation.

Empirical analysis of the impact of interference patterns
on PHY-layer features. The accuracy of per-packet RSSI
and per-packet LQI has been validated to maintain relatively
high in most interference patterns [20].Therefore, the four
interference patterns have little impact on above two PHY-

Table 1: Four scenarios considering interference power
(PAPR) and average number of consecutive corrupted
symbols (bursty level). H(high), L(low), I(interference),
B(bursty).

Scenarios PAPR Bursty Level
HIHB

(Nearby video streaming in office)
≥ 3.2 10∼16

HILB
(Nearby browser in office)

≥3.2 ≤10

LIHB
(Faraway video streaming in office)

1∼3.2 10∼16

LILB
(Faraway browser in office)

1∼3.2 ≤10

features.

The accuracy of per-byte SINR is highly affected by the
measured noise power that could be interfered. The noise
power is recorded when the link turns to idle. When the
interference strength is large (i.e., PAPR > 3.2), the received
power is highly possible to be larger than the CCA threshold,
thus we can filter the interfered noise and sample the correct
noise power with high probability. Therefore, the relative error
of inferred per-byte SINR is small (as shown in Fig. 4-(a) and
(b)). When interference strength is small (1 < PAPR < 3.2),
the interfered noise power could be smaller than the CCA
threshold and then is recorded. Fig. 4-(c) and 4-(d) present
the relative error of inferring PHY-layer features under LIHB
and LILB. First, we see the relative error is increasing with
the increased PAPR (i.e., from 1.3 to 2.4), because the WiFi
interference starts to appear and leads to interfered PHY-
layer features. Then, the relative error is decreasing with the
increased PAPR (i.e., from 2.4 to 3.2), because the interference
power starts to become larger and the interfered PHY-layer
features can be filtered by the CCA threshold. Besides, the
relative error is increased when bursty level is high because
the more the consecutive corrupted bytes are, the higher the
probability of recording interfered noise power is.

Calculating interference pattern. Based on the above
observations, we design a simple but effective interference
pattern calculation algorithm to guide the instrumentation of
pilots (outlined in Algorithm 1). The input of the algorithm
is the in-packet RSSI time series sampled during packet
reception. The output of the algorithm is the interference
pattern which determines the number of instrumented pilots.
We first detect different interference power level according
to HighInterf, then the interference pattern is computed by
the multiplication of PAPR d (i.e., the relative ratio to the
PeakPapr) and burst p (i.e., the ratio to the range of bursty
level) as shown in line 14 of Algorithm 1.

Fig. 5 shows the results of corruption estimation accuracy
when instrumenting different number of pilots. We omit the
results of high interference power scenarios due to its minor
impact on accuracy (e.g., only <2 pilots are enough to achieve
>90% accuracy when the LR model is converged). The results
from Fig. 4 guide us to set the upper and lower bound of pilots
number (i.e., MaxBurst and MinBurst).

Adaptive pilot instrumentation at sender. There are two
steps to adaptively instrument pilots at the sender side. (1)
Obtaining interference pattern (IPT) corresponding to the
packet for transmission. The IPT is obtained from IPT buffer
according to pkt id. IPT buffer stores the key-value pair (IPT,
pkt id) that is extracted from the feedback information of
the receiver. It means that the receiver determines IPT for
the packet with pkt id. The IPT is set to 0 when there

12471244430

(a) Impact of high interference power
(PAPR > 3.2) and high bursty level
(11 ∼ 16).

(b) Impact of high interference power
(PAPR > 3.2) and low bursty level
(1 ∼ 10).

(c) Impact of low interference power
(1 < PAPR < 3.2) and high bursty
level (11 ∼ 16).

(d) Impact of low interference power
(1<PAPR< 3.2) and low bursty level
(1 ∼ 10).

Fig. 4: Impact of interference power (PAPR) and average
number of consecutive corrupted symbols (bursty level) on
the relative error of inferred PHY-layer features.

(a) Low interference power and high
bursty level scenario.

(b) Low interference power and low
bursty level scenario.

Fig. 5: Impact of the number of instrumented pilot symbols
on corruption estimation accuracy.

is no corresponding pkt id. (2) Obtaining the number of
instrumented pilots according to interference pattern. The
number of pilots is determined by the multiplication of IPT
and the range of pilots. When the sender is under model
convergence state (i.e., IniPktC≥0), the number of pilots is
set to MaxPilot to let the model converge quickly.

Adaptive pilot instrumentation at receiver.When a packet
arrives, the receiver needs to complete four tasks. (1) Obtaining
pilots. The receiver first obtains IPT according to this packet
id, pkt id, from IPT buffer. Note that both receiver and
sender maintain the same IPT buffer. It is generated by the
receiver and is sent back to the sender. The receiver does not
extract pilots when there is no corresponding pkt id. Then
the number of pilots is calculated following the same way
as the sender (as shown in Algorithm 2). (2) Discarding
abnormal pilots. When the link is unreliable, the feedback
information could be lost at the sender, resulting in that
the receiver extracts wrong pilots. When the difference of
corruption estimation results inferred by pilots and our model
exceeds a threshold AbPilots, the receiver regards the pilots
as abnormal and discards them. (3) Updating the model and
detecting corruptions. The model is updated when there are

Algorithm 1: Interference pattern calculation at receiver

Input : RSSI sequence RSSI[L]
Output: Interference pattern IPT

1 PAPR = get papr(RSSI[L]);
2 bursty = get bursty level(RSSI[L]);
3 burst p = 0; PAPR d = 0;
4 if PAPR > HighInterf then
5 return 0;

6 if bursty ≤ MaxBurst then
7 burst p = (bursty - MinBurst)/(MaxBurst - MinBurst);

8 else
9 burst p = 1;

10 if PAPR ≤ PeakPapr then
11 PAPR d = (PAPR - MinPapr)/(PeakPapr - MinPapr);

12 else
13 PAPR d = 1 - (PAPR - PeakPapr)/(MaxPapr - PeakPapr);

14 IPT = PAPR d*burst p;
15 return IPT;

Algorithm 2: Adaptive pilot instrumentation at sender

1 convergence packet count IniPktC; interference pattern IPT;
2 pilot size = MaxPilot - MinPilot;
3 case pkt received from network layer do
4 if IniPktC ≥ 0 then
5 evenly instrument MaxPilot symbols to pkt;
6 decrease IniPktC;

7 else
8 find IPT in IPT buffer corresponding to this pkt id;
9 p size = MinPilot + pilot size*IPT;
10 evenly instrument pilots to pkt according to p size;

11 send pkt and start ACK timer;

12 case ACK timer times out do
13 notify upper-layer protocol ACK timer times out;

14 case ACK/NACK received do
15 extract (IPT, pkt id) from ACK/NACK;
16 store (IPT, pkt id) into IPT buffer;
17 notify upper-layer protocol ACK/NACK;

available pilots. Besides detecting corruptions, the receiver can
calculate SER (symbol error rate) from estimated corruptions.
(4) Calculating interference pattern. The interference pattern,
IPT, is calculated as Algorithm 1 and sent back to the sender
using ACK/NACK. The key-value pair (IPT, next packet id)
are stored into IPT buffer.

V. EVALUATION

In this section, we evaluate the performance of AccuEst,
and compare AccuEst with the state-of-the-art, i.e. CARE
[16]. We also deploy AccuEst on an indoor testbed running
CTP protocol [32] to further evaluate the system and discover
its benefits to assist a coding-based transmission protocol
(i.e., ACR [33]). The indoor testbed consists of 8x10 TelosB
nodes and 30 of them are used in our experiments (see Fig.
6). AccuEst is implemented on the TelosB platform running
TinyOS 2.1.1. The code size is ∼8.9 KB in ROM, and ∼3.6
KB in RAM. Considering a TelosB node has a total of 48 KB
ROM and 10 KB RAM, this overhead is acceptable.

12481245431

Algorithm 3: Adaptive pilot instrumentation at receiver

1 sliding window W[]; convergence packet count IniPktC;
2 pilot size = MaxPilot - MinPilot; interference pattern IPT;
3 case SFD rising do
4 start RSSI sampling and store value in RSSI[L];

5 case SFD falling do
6 stop RSSI sampling;

7 case pkt received do
8 if IniPktC ≥ 0 then
9 p size = MaxPilot;
10 decrease IniPktC;

11 else
12 find IPT in IPT buffer corresponding to pkt id;
13 p size = MinPilot + pilot size*IPT;

14 get feature phy[L], pilots link[] according to p size;
15 if (phy[L], link[]) is abnormal then
16 discard link[];

17 else
18 put phy[L], link[] into W[] and update model;

19 calculate IPT from RSSI[L];
20 store IPT, next pkt id into IPT buffer;
21 if pkt is correct then
22 reply ACK (IPT, next pkt id);

23 else if pkt is error then
24 estimate corruption cor pos[] from phy[L];
25 calculate SER according to cor pos[];
26 deliver to upperprotocol(cor pos[], SER, pkt);
27 reply NACK (IPT, next pkt id);

Fig. 6: 8x10 indoor testbed.

A. Experimental Methodology
We select overlapped channels for WiFi and CC2420 radio

(i.e., channel 11 for WiFi and channel 21 for CC2420 radio).
To present different WiFi traffic patterns [7, 20] (i.e., web
browsing and video streaming), we use iperf [34] to generate
different bursty levels (i.e., 3∼6M, 9∼12M TCP traffic, and
15∼18M UDP traffic, respectively). To present different noise
environments (i.e., power control room and transformer vault
[35]), we use USRP [30] to generate background noise levels
(i.e., -85∼-82dBm, -90dBm and -98∼-95dBm). To present
different SINR, we vary the distance between the transceiver
pair and the interferer for different noise environments to
generate SINR ranges (e.g., -10∼-6dB, -8∼-3dB, 0∼4dB).
With the above tools, we can simulate practical interference
scenarios like office or noisy industry environments [1, 7, 35].

Single-hop experiment settings. We use two TelosB nodes
running TinyOS 2.1.1 as a transceiver pair. They communicate
with each other using the CC2420 radio with the power level
of 6 at a distance of 1.5m apart. The sender sends data packets

Table 2: Experimental settings. H(high), L(low),
I(interference), B(bursty), N(noise).

Scenarios SINR Traffic Noise
power

HIHB
(Nearby video streaming in office)

-5∼-1dB
UDP

15∼18M
-90dBm

HILB
(Nearby browser in office)

-5∼-1dB
TCP

3∼6M
-90dBm

LIHB
(Faraway video streaming in office)

0∼4dB
UDP

15∼18M
-90dBm

LILB
(Faraway browser in office)

0∼4dB
TCP

3∼6M
-90dBm

HIHN
(Nearby interf. in power control room)

-10∼-6dB
TCP

9∼12M
-85∼ -82dBm

HILN
(Nearby interf. in transformer vault)

-8∼-3dB
TCP

9∼12M
-98∼ -95dBm

LIHN
(Faraway interf. in power control room)

-3∼2dB
TCP

9∼12M
-85∼ -82dBm

LILN
(Faraway interf. in transformer vault)

1∼6dB
TCP

9∼12M
-98∼ -95dBm

with a payload of 97 bytes to the receiver with an interval of
512ms.

Multi-hop testbed experiment settings. As shown in Fig.
6, the distance between any two nodes is 0.5m. We set the
radio power of each node to -32.5 dBm, resulting in a multi-
hop wireless sensor network. We apply AccuEst to a coding-
based transmission protocol ACR [33] to further evaluate the
system. ACR relies on detected corruptions to determine the
retransmitted partial packet when the decoding procedure fails.
We replace the corruption detection component in ACR and
CARE with our approach, respectively. We then compare the
end-to-end performance metrics, i.e., packet delivery rate and
data latency. The detailed experimental settings are shown in
Table 1.

B. Corruption Detection Accuracy
As analyzed in Section III, the ΔRSSI indicator suffers

from low accuracy in a highly noisy environment (i.e., power
control room and transformer vault [35]). We compare AccuEst
with CARE in terms of corruption detection accuracy under
different noisy environments and link reliability. Since CARE
is a retransmission protocol, we only compare AccuEst with
the corruption estimation component of CARE.

As shown in Fig. 7-(a), AccuEst consistently achieves
higher accuracy than CARE under all scenarios. Specifically,
AccuEst improves accuracy significantly by 78.6% on average
compared to CARE. The reason is that when SINR is
extremely low (e.g., -10∼-6dB) or higher than -3dB, and noise
level is comparable to or higher than interference strength (i.e.,
HIHN, LIHN and LILN), CARE would misjudge the byte as
correct since the RSSI difference is negligible in such cases.
However, AccuEst will classify the byte as erroneous since
large noise makes SINR small. Moreover, AccuEst can adapt
to various RSSI sensitivity of nodes using LR model, resulting
in a higher accuracy than CARE when the RSSI difference is
large (i.e., HILN).

To evaluate the impact of the unreliable link on AccuEst, we
reduce the power level of two TelosB nodes to 2, at a distance
of 1.5m. With this configuration, the received signal strength
is low, resulting in an unreliable link (<15% PRR for data
packet). Fig. 7-(b) presents the corruption detection accuracy
for the unreliable link. Comparing Fig. 7-(a) and Fig. 7-(b),
we see that the accuracy reduction of AccuEst is small. The
reason is two-fold. First, the lost of feedback information (i.e.,
interference pattern and packet id) may reduce the accuracy of
AccuEst. However, the size of ACK/NACK packet including

12491246432

(a) Corruption estimation under reli-
able link.

(b) Corruption estimation under unre-
liable link.

Fig. 7: Corruption estimation accuracy.

Fig. 8: Computation over-
head.

Fig. 9: Pilot overhead.

the feed information is much smaller than typical data packet.
Therefore, as shown in Fig. 7-(b), the loss rate of ACK/NACK
packet (about 10.3%) is much smaller than that of the data
packet (about 76.4%). This mitigates the impact of unreliable
link. Second, when the feedback information is lost, AccuEst
incorporates an effective method to discard abnormal pilots.
Therefore, the pilots instrumented at unsynchronized positions
between the sender and the receiver are abandoned. This
further improves the robustness of AccuEst against unreliable
link.

C. Computation Overhead
The major computation overhead of AccuEst falls into the

number of pilots that are used to update the parameters.
The number of pilots is adjusted along with the change
of interference pattern. Therefore, we evaluate computation
overhead under different interference patterns. The results are
obtained from 1000 packets under four interference patterns,
as shown in Fig. 8. Even in the worst case (i.e., LIHB) the
median computation overhead is only about 1.803ms, and it
is acceptable considering the level of the MAC backoff time
at 5ms in expectation, and the packet transmission time at
3.5 ms for 110 bytes packet given a data rate of 250kbps. In
the worst case (i.e., LIHB), the computation overhead of the
classification is about 9.5% of whole computation overhead
(i.e., feature calculation, parameter update and corruption
classification). It is comparable to feature calculation (e.g.,
about 10.3%), but smaller than parameter update (e.g., about
90.2%). The reason is that parameter update needs more
iterations for multiple packets in a sliding window, while
both classification and feature calculation only deal with the
received packet.

D. Pilot Overhead
As described in Section IV, we utilize the number of

detected corruptions to estimate the SER in a packet. We thus
compare the pilot overhead between AccuEst and the pilot-
based approach, i.e., ZipTx [11], with respect to the relative
error of estimating SER. The pilot overhead is obtained by

Fig. 10: Convergence speed. Fig. 11: Impact of dynam-
ic interference patterns.

averaging the number of instrumented pilots when achieving
the same relative error under different interference patterns.

We can see from Fig. 9 that AccuEst reduces the pilot
overhead significantly by 53.7% on average compared to
ZipTx. The reason is that AccuEst can infer SER using the
trained LR model, and only instruments a small number of
pilots to update the model when needed. ZipTx always needs
to instrument a number of pilots to achieve the same accuracy
of SER estimation.

E. Convergence Speed
We now investigate the convergence speed of our LR model

under different interference scenarios. To evaluate how the
corruption detection accuracy evolves, we set the number of
instrumented pilots to MaxPilot (as shown in Algorithm 3)
for each packet. The experiment is repeated 10 times for
each scenarios and the results are averaged. As shown in Fig.
10, we observe that the worst case is LIHB. The reason is
that the LIHB scenario would change the SINR model with
high probability. Then we need more pilots to converge the
dynamic changing model. Under the LIHB scenario, only 11
packets (i.e., about 1.035s for 110 bytes packet, given 250kbps
data rate and 0.1s inter-packet interval) are needed to make
AccuEst achieve higher than 90% accuracy. This number is
quite consistent for all 10 packet traces on average. We thus
set the convergence packet number IniPktC to 11 to ensure our
model converge quickly under any scenarios.

F. Impact of Dynamic Interference Pattern
In this experiment, we evaluate our adaptive pilot instrumen-

tation component under a dynamic interference experiment.
The number of pilots is small under high interference
scenarios, because the SINR model is relatively stable and
AccuEst does not need to frequently update the model.
Therefore, we only evaluate the impact of high SINR
scenarios (e.g., 0∼4dB) on the performance of adaptive pilot
instrumentation component. We set SINR to range [0, 4]dB
while varying bursty levels. The low-bursty level fraction is
computed as the ratio of the low bursty time duration and the
total duration (i.e., 100 minutes in our evaluation). We compare
the pilot overhead between AccuEst and ZipTx when achieving
lower than 10% relative error of estimated SER.

We conduct each experiment 10 times and show the
average results in Fig. 11. The results show that our approach
significantly reduces the pilot overhead by 36.1% on average,
while achieving the approximately equivalent relative error
compared to ZipTx. The reason is that to achieve a small
relative error of estimated SER under any scenarios, ZipTx
has to set the number of pilots according to the worst case.
AccuEst can adapt to the interference patterns to reduce the
expectation number of pilots.

12501247433

(a) Packet delivery ratio. (b) Data latency.

Fig. 12: End-to-end performance comparison

G. Testbed Experiments
ACR actively converts most potential collisions into the long

and short packet collision patterns to enable a lightweight
FEC scheme to recover collided packets. By default, a short
ACR packet has 25 bytes data with a 16-bit CRC, and a long
ACR packet consists of 11 blocks where the first eight blocks
are data and the rest are redundancy. The block size is 10
bytes. When the number of erroneous blocks is larger than
three, ACR relies on the detected corruptions to determine the
retransmitted partial packets for FEC decoding. If the decoding
procedure fails, ACR switches to the ARQ scheme. A block is
regarded as corrupted when the difference between RSSI[i] and
RSSIbase is larger than 5. We replace the corruption detection
component with AccuEst and CARE, respectively. A block is
regarded as corrupted when there exists at least one erroneous
byte.

Packet delivery ratio. Figure 12-(a) shows the packet deliv-
ery ratio (PDR) with different corruption detection approaches.
The result shows that ACR-AccuEst improves PDR by 20.3%
and 18.3% on average compared to ACR and ACR-CARE,
respectively. We observe that the PDR of ACR and ACR-
CARE is low under HIHN, LIHN and LILN scenarios. The
reason is that both ACR and ACR-CARE suffer from low
accuracy of corruption estimation under these scenarios. In
HIHN and LIHN, false negatives are more likely to happen
(erroneous blocks are identified as correct). The FEC decoding
would fail and multiple retransmissions will be incurred. In
LILN, false positives are more likely to happen (correct blocks
are identified as erroneous), leading to multiple retransmissions
of the correct parts of the packets.

Data latency. The overhead of successfully transmitting a
packet at each hop includes three parts: (1) ACR encoding
and decoding. (2) MAC backoff and packet transmission. (3)
Corruption estimation. The overhead of ACR encoding and
decoding is 0.1ms and 0.5ms, respectively, according to our
experimental results. The expected MAC backoff time is 5ms
because the maximum initial backoff time in TinyOS is about
10ms. The packet transmission time is about 3.5ms for a 110-
byte packet with a data rate of 250kbps on the CC2420 radio
[15]. According to Fig. 8, corruption estimation typically costs
1.412ms and 0.376ms on average, under low interference and
high interference scenarios. Therefore, it is acceptable in terms
of the MAC backoff time and packet transmission time.

Fig. 12-(b) shows the data latency in a 5-hop network.
The results show that compared to ACR-CARE, ACR-AccuEst
reduces data latency by 10.2% on average under HIHN
and LIHN. The reason is that under HIHN and LIHN, the
symbol error rate is relatively high, the corrupted blocks
that are missed by ACR and ACR-CARE would lead to
multiple FEC decoding failures and retransmissions of whole

packet, resulting in large latency. Differently, ACR-AccuEst
can detect more corrupted blocks and reduce extra FEC
decoding overhead, only requesting the retransmissions of
corrupted part of the packets.

VI. DISCUSSION

Energy efficiency when enabling high-resolution RSSI
sampling procedure. The high-resolution RSSI sampling will
not incur considerable energy consumption. The reason is
two-fold: 1) The RSSI value in the register is averaged
over 8 symbol periods (128 μs) according to the CC2420
datasheet [36]. Hence, our implementation does not change
hardware sampling and only increases the register reading
rate, which incurs small energy consumption compared to
radio operations. For example, TelosB [37] nodes consume
21.8mA when receiving a packet. The additional RSSI reading
only adds 0.5mA [38]. Note that our approach does not turn
CPU into active during duty cycling. It turns the CPU into
active when receiving a packet, which lasts for at most 4ms
(considering a max packet length of 128 bytes). 2) Although
the energy consumption is slightly increased by RSSI readings,
the energy efficiency can be improved since retransmissions
can be reduced with our accurate corruption estimation.

Generality on other platforms. The core component of
our approach is high-resolution RSSI sampling. We believe
that for any platform that can enable high-resolution RSSI
sampling (e.g. Micaz[39]) or provide fine-grained Channel
State Information (CSI) of the channel where the bits are
transmitted on (e.g., 5300 NIC[40]), our approach can be easily
applied.

Other interference types. We have built the model
according to the sampled RSSI, which is adaptive to different
types of interference. Our approach performs well when there
are clear interference patterns and may not perform well
otherwise. We also note that when the interference is random,
our approach can still perform better than ZipTx as shown in
Fig. 11.

Limitation. Considering fast transmission rate of 802.11n
(e.g., typical data rate of 200Mbit/s [41]), the typical packet
on-air time is 5.45 or 57.3μs according to Esense[42]. Our
approach with high-resolution RSSI sampling (e.g., one sample
per 32μs) may not be able to capture the corruption pattern
caused by short WiFi packets.

VII. CONCLUSION

Accurate corruption estimation is one of the key factors in
improving the resilience of ZigBee transmissions. This paper
reveals the limitations of existing in-packet RSSI approaches,
and uses per-byte SINR to detect corruption. We combine
the link-layer information (pilot symbols) and the PHY-layer
features (i.e., per-packet LQI, per-packet RSSI, and per-
byte SINR) to further improve corruption detection accuracy.
Furthermore, we design an interference pattern-aware pilot
instrumentation scheme to strike a good balance between
accuracy and overhead. We conduct extensive experiments
including single-link and multi-hop to evaluate our approach.
Testbed results show that our approach significantly improves
packet delivery ratio.

For our future work, there are multiple directions to explore.
First, we will generalize our approach to more interference
types. Second, we will develop a better instrumentation scheme
to further reduce the pilot overhead.

12511248434

REFERENCES

[1] C. J. M. Liang, N. B. Priyantha, J. Liu, and A. Terzis, “Surviving Wi-Fi
Interference in Low Power ZigBee Networks,” in Proc. of ACM SenSys,
2010.

[2] X. G. Mobashir Mohammad and M. C. Chan, “Oppcast: Exploiting
spatial and channel diversity for robust data collection in urban
environments,” in Proc. of ACM/IEEE IPSN, 2016.

[3] K. Jamieson and H. Balakrishnan, “Ppr: Partial packet recovery for
wireless networks,” in Proc. of ACM SIGCOMM, 2007.

[4] S. Katti, D. Katabi, H. Balakrishnan, and M. Medard, “Symbol-
level network coding for wireless mesh networks,” in Proc. of ACM
SIGCOMM, 2008.

[5] H. S. J. G. S. D. Anwar Hithnawi, Su Li, “CrossZig: Combating Cross-
Technology Interference in Low-power Wireless Networks,” in Proc. of
ACM/IEEE IPSN, 2016.

[6] A. Koetter, Ralf; Vardy, “Algebraic soft-decision decoding of
reedsolomon codes,” IEEE Transactions on Information Theory, vol. 49,
no. 11, pp. 2809–2825, 2003.

[7] Z. Zhao, W. Dong, G. Chen, G. Min, T. Gu, and J. Bu, “Embracing
corruption burstiness: Fast error recovery for zigbee under wi-fi
interference,” IEEE Transactions on Mobile Computing, 2016,To appear.

[8] W. Du, Z. Li, J. C. Liando, and M. Li, “From rateless to distanceless:
Enabling sparse sensor network deployment in large areas,” in in Proc.
of ACM Sensys, 2014.

[9] W. Du, Z. Li, J. C. Liando, and M. L., “From rateless to distanceless:
Enabling sparse sensor network deployment in large areas,” IEEE/ACM
Transactions on Networking, vol. 22, no. 4, pp. 2498–2511, 2016.

[10] S. Sen, N. Santhapuri, R. R. Choudhury, and S. Nelakuditi, “Accurate:
Constellation based rate estimation in wireless networks,” in Proc. of
USENIX NSDI, 2010.

[11] C. J. Lin, N. Kushman, and D. Katabi, “Ziptx: Harnessing partial packets
in 802.11 networks,” in Proc. of ACM MobiCom, 2008.

[12] J. Huang, Y. Wang, and G. Xing, “LEAD: Leveraging Protocol
Signatures for Improving Wireless Link Performance,” in Proc. of ACM
MobiSys, 2013.

[13] L. Wang, X. Qi, J. Xiao, K. Wu, M. Hamdi, and Q. Zhang, “Wireless
rate adaptation via smart pilot,” in Proc.of IEEE ICNP, 2014.

[14] M. Vutukuru, H. Balakrishnan, and K. Jamieson, “Cross-layer wireless
bit rate adaptation,” in in Proc. of ACM SIGCOMM, 2009.

[15] J.-H. Hauer, A. Willig, and A. Wolisz, “Mitigating the effects of rf
interference through rssi-based error recovery,” in Proc. of EWSN, 2010.

[16] W. Dong, J. Yu, and X. Liu, “CARE: Corruption-Aware Retransmission
with Adaptive Coding for the Low-Power Wireless,” in Proc. of IEEE
ICNP, 2015.

[17] X. Zheng, Z. Cao, J. Wang, Y. He, and Y. Liu, “ZiSense: towards
interference resilient duty cycling in wireless sensor networks,” in Proc.
of SenSys, 2014.

[18] D. Liu, Z. Cao, M. Hou, and Y. Zhang, “Frame counter: Achieving
accurate and real-time link estimation in low power wireless sensor
networks,” in Proc. of ACM/IEEE IPSN, 2016.

[19] A. Hithnawi, H. Shafagh, and S. Duquennoy, “Tiim: Technology-
independent interference mitigation for low-power wireless networks,”
in Proc. of ACM/IEEE IPSN, 2015.

[20] F. Hermans, O. Rensfelt, T. Voigt, and E. Ngai, “SoNIC: Classifying
interference in 802.15.4 sensor networks,” in Proc. of ACM/IEEE IPSN,
2013.

[21] X. Z. D. F. D. X. T. X. Meng Jin, Yuan He, “Smogy-link:fingerprinting
interference for predictable wireless concurrency,” in Proc. of IEEE
ICNP, 2016.

[22] F. M. Sallabi, A. M. Gaouda, A. H. El-Hag, and M. M. A. Salama,
“Evaluation of zigbee wireless sensor networks under high power
disturbances,” Proc. of IEEE Transactions on Power Delivery, vol. 29,
no. 1, pp. 13–20, 2014.

[23] J. M. Cano-Garca and E. Casilari, “An empirical evaluation of the
consumption of 802.15.4/zigbee sensor motes in noisy environments,” in
Proc. of International Conference on Networking, Sensing and Control,
2011.

[24] S. S. Hong and S. R. Katti, “DOF: A Local Wireless Information Plane,”
in Proc. of SIGCOMM, 2011.

[25] K. J. P. L. Rodrigo Fonseca, Omprakash Gnawali, “Four-bit wireless link
estimation,” in Proc.of HotNets, 2007.

[26] D. S. J. De Couto, D. Aguayo, J. Bicket, and R. Morris, “A high-
throughput path metric for multi-hop wireless routing,” in In Proc. of
ACM Mobicom, 2003.

[27] S. R. D. Ritesh Maheshwari, Shweta Jain, “On estimating joint

interference for concurrent packet transmissions in low power wireless
networks,” in Proc. of ACM WiNTECH, 2008.

[28] T. Liu and A. E. Cerpa, “Foresee (4c): Wireless link prediction using
link features,” in Proc. of ACM/IEEE IPSN, 2011.

[29] T. Liu and A. E. C., “TALENT: temporal adaptive link estimator with
no training,” in Proc. of ACM SenSys, 2012.

[30] E. R. LLC, “https://www.ettus.com/,” 2007.
[31] M. Spuhler, V. Lenders, and D. Giustiniano, “Blitz: Wireless link quality

estimation in the dark,” in In Proc. of EWSN’ 13, 2013.
[32] O. Gnawali, R. Fonseca, K. Jamieson, D. Moss, and P. Levis, “Collection

tree protocol,” in In Proc. of ACM SenSys, 2009.
[33] Y. Wu, G. Zhou, and J. A. Stankovic, “ACR: active collision recovery in

dense wireless sensor networks,” in in Proc. of IEEE INFOCOM, 2010.
[34] J. D. J. F. A. Tirumala, F. Qin and K. Gibbs, “Iperf: The tcp/udp

bandwidth measurement tool,” http://dast.nlanr.net/Projects, 2005.
[35] V. C. Gungor, B. Lu, and G. P. Hancke, “Opportunities and challenges of

wireless sensor networks in smart grid,” IEEE Transactions on Industrial
Electronics, vol. 57, no. 10, pp. 3557–3564, 2010.

[36] C. Datasheet, “http://focus.ti.com/lit/ds/symlink/cc2420.pdf,” Texas In-
struments, 2007.

[37] J. Polastre, R. Szewczyk, and D. Culler, “Telos: enabling ultra-low power
wireless research,” in In Proc. of ACM/IEEE IPSN, 2005.

[38] R. Fonseca, P. Dutta, P. Levis, and I. Stoica, “Quanto: Tracking energy
in networked embedded systems,” in in Proc. of USENIX OSDI, 2008.

[39] J. Hill and D. Culler, “Mica: a wireless platform for deeply embedded
networks,” IEEE MICRO, vol. 22, no. 6, pp. 12–24, 2002.

[40] D. Halperin, W. Hu, A. Sheth, and D. Wetherall, “Tool release: Gathering
802.11n traces with channel state information,” Proc. of ACM SIGCOMM
CCR, vol. 41, no. 1, p. 53, 2011.

[41] I. standard 802.11n, “http://luci.subsignal.org/ jow/802.11n-2009.pdf,”
2009.

[42] K. Chebrolu and A. Dhekne, “Esense: Communication through energy
sensing,” in Proc. of ACM MobiCom, 2009.

12521249435

