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Abstract—Advances in large language models (LLMs) have
opened up new possibilities across various fields, fueling a new
wave of interactive AI applications such as DeepSeek and Chat-
GPT. Inference serving systems play a crucial role in supporting
these applications. Recent research indicates that when cross-
server parallelization is enabled in inference serving systems, data
synchronization overhead can exceed 65% of the total inference
delay, making the reduction of communication overhead essential
for speeding up inference. While existing systems accelerate
cross-server communications by offloading synchronization oper-
ations to programmable switches, they often suffer from limited
aggregation throughput under bursty traffic conditions, posing
challenges for homogeneous network environments.

To address these challenges, we propose HeroServe, an in-
novative inference serving system that leverages heterogeneous
networks to accelerate data synchronization in distributed clus-
ters. Our approach enables a fast and scalable inference serving
system by employing an offline planner for joint computation
allocation and communication scheduling, along with an online
scheduler for dynamic traffic management and load balanc-
ing. We implement a prototype on a testbed comprising six
servers and two programmable switches. Experimental results
demonstrate that HeroServe improves scalability by 1.53× while
achieving lower latency compared to state-of-the-art solutions.

I. INTRODUCTION

According to IDC projections, the global interactive AI

market is expected to reach nearly $150 billion by 2027,

with a compound annual growth rate (CAGR) of 85.7% [1].

Advances in large language models (LLMs) have opened up

new possibilities across various fields, fueling a new wave of

interactive AI applications such as DeepSeek [2] and ChatGPT

[3]. Inference serving systems are vital for supporting LLM-

based interactive AI applications [4], [5]. To retain tens of

millions of daily users, these applications require low-latency

inference and efficient concurrent request handling [6], [7].

Existing inference service systems improve efficiency

through batch scheduling [8], instance deployment optimiza-

tion [4], [7], and host memory fragmentation reduction [9].

However, these approaches typically focus on scenarios where

models are deployed on a single GPU server or in configura-

tions where multiple GPU servers are interconnected via high-

bandwidth networks (e.g., InfiniBand [10]). Such networks are

assumed to provide stable high-throughput transmission with
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negligible latency. In contrast, the work in [11] demonstrates

that InfiniBand can also experience congestion under bursty or

highly competitive traffic conditions, resulting in throughput

drops exceeding 60% and doubling latency. Therefore, reduc-

ing communication overhead is critical for achieving faster

inference speeds.

Recently, a family of In-Network Aggregation (INA) solu-

tions has been proposed to accelerate cross-server communi-

cation in distributed systems [12], [13], [14], [15], [16], [17],

[18], [19], [20]. These solutions achieve performance gains

by offloading key communication behaviors (i.e., collective

communication operations [21]) from GPU servers to pro-

grammable switches [12], resulting in fewer communication

hops and reduced synchronization load. However, existing INA

algorithms still suffer from low aggregation throughput in

homogeneous networks (e.g., Ethernet) [22] when faced with

bursty traffic that induces network congestion. For example,

[22] shows that aggregation throughput can degrade by nearly

78% under bursty conditions, which severely impacting the

scalability of inference serving systems.

To overcome these performance issues, we propose an

innovative approach, HeroServe, which leverages heteroge-
neous networks (e.g., combining inter-server links like Eth-

ernet with intra-server links such as NVLink) to accelerate

cross-server communications in distributed clusters. Unlike

existing approaches that rely solely on homogeneous networks,

HeroServe exploits the strengths of high-bandwidth NVLink

(e.g., 600GBs in A100 [23]) and 100Gbps Ethernet to sub-

stantially increase aggregation throughput, alleviate network

congestion, and support faster, more scalable inference serving

for a larger number of users (as evaluated in Section V).

However, designing an inference serving system over het-

erogeneous networks introduces significant challenges. Chal-
lenge 1: joint optimization of computation allocation and
communication scheduling in heterogeneous environments.
This problem is characterized by dynamic constraints (e.g.,

changes in available GPU memory during the allocation and

release of model instances) and a high-dimensional deci-

sion space. For example, the computation resource allocation

subproblem alone yields a search space on the order of



O(N!/(Ptens!)
Ppipe )1, further complicated by factors such as

shortest path selection for communication. To address this

challenge, we propose a scalability-oriented offline planner

that integrates asynchronous processing with heuristic algo-

rithms. The planner formulates a comprehensive joint op-

timization model for both computation and communication.

Heuristic strategies are employed to reduce the overall search

space, and the global solution is fine-tuned through techniques

such as random perturbations. Furthermore, multiple compu-

tations (e.g., constructing an offline matrix of node-to-node

shortest paths) are scheduled asynchronously to further reduce

problem-solving overhead.

Challenge 2: dynamic traffic management and load bal-
ancing. The dynamic, bursty nature of inference traffic leads to

fluctuating loads on heterogeneous networks. In real time, se-

lecting the best transmission path and communication scheme

is difficult because of variable traffic volume and differing link

utilization. To tackle this challenge, we propose a load-aware
online scheduler that continuously monitors current traffic and

updates lightweight, distributed tables tracking scheduling pol-

icy costs and shared link utilization. By dynamically adjusting

the communication strategy and selecting the most favorable

transmission routes, the online scheduler effectively balances

network resources across both high speed intra-server links

and inter-server Ethernet connections, reducing congestion and

improving overall inference throughput and latency.

We prototype HeroServe on a testbed consisting of six

servers and two programmable switches, and simulate it on

large-scale clusters, demonstrating its capability to achieve

the scalable and fast inference serving system at the same

time (Section V). We evaluate HeroServe with production

traces [24], [25]. In particular, we evaluate the end-to-end

performance of HeroServe for OPT- 66B and OPT-175B [26]

(an open-source LLM similar to the largest GPT-3 model) on

NVIDIA GPUs. The experimental results show that HeroServe

improves scalability by 1.53×, 1.42× and 1.33×, while main-

taining the latency SLAs compared to state-of-the-art solutions

DistServe [4], DS-ATP [12] and DS-SwitchML [13].

This paper makes the following contributions:

• We analyze existing inference serving systems for large

language models and observe a key limitation that current

in-network aggregation algorithms are primarily designed

for homogeneous networks. This design choice leads to

network congestion and lower aggregation throughput

under bursty traffic conditions (§II).

• We design HeroServe, an inference serving system that

accelerates data synchronization by leveraging heteroge-
neous networks. HeroServe employs an offline planner for

joint computation allocation and communication schedul-

ing together with an online scheduler for dynamic traffic

management and load balancing (§III).

• We implement a HeroServe prototype on a testbed con-

sisting of six servers and two programmable switches and

1N is the number of GPUs to be partitioned into Ppipe pipeline groups of
equal size Ptens tensor GPUs, i.e., N = Ptens ·Ppipe.

evaluate it using production traces and large language

models on NVIDIA GPUs. The experiments demonstrate

that HeroServe significantly improves scalability and re-

duces latency compared to state-of-the-art solutions. (§IV

and §V).

II. BACKGROUND AND MOTIVATIONS

In this section, we provide the background of the LLM

inference and discuss the performance issues in existing works

to motivate our work.

A. LLM Inference and Applications

LLM Inference. Large language model inference oper-

ates through the autoregressive Transformer architecture [27],

where input prompts are first tokenized and processed sequen-

tially. During each iteration, the model estimates a probability

distribution over the vocabulary, selects the next token via

greedy decoding or probabilistic sampling, and appends it

to the growing sequence. This cyclic process continues until

either an end-of-sequence marker is generated or a predefined

maximum sequence length is reached, as documented in

foundational studies [28], [29], [30].

LLM Applications. Large language model applications

have demonstrated explosive growth, exemplified by Chat-

GPT’s achievement of surpassing 100 million monthly active

users within two months of its launch [3]. Enterprise deploy-

ments reveal concrete economic impacts, including up to 30%

reductions in operational costs, 25%–40% improvements in

process efficiency, and annual revenue enhancements reaching

tens of millions in specific sectors [31]. Through prompt

engineering that reframes diverse tasks (e.g., translation, sum-

marization) as generative problems, LLMs are fundamentally

transforming productivity paradigms and cost structures across

multiple industries [32].

B. Inference Serving System

Transformer-based large language model inference involves

two core steps: the prefill step and the decoding step [4]. In

the prefill phase, the model processes the entire input prompt

concurrently to compute intermediate representations and gen-

erate the first token. While in the decoding phase, the model

sequentially produces subsequent tokens one-by-one [5]. Most

existing systems colocate these two phases on the same GPU

cluster using continuous batching [8]. However, this colocation

introduces prefill-decoding interference because the compute-

intensive prefill phase monopolizes GPU compute cycles and

memory bandwidth, causing decoding tasks to wait for avail-

able resources and experience increased queuing delays. It

negatively affect latency metrics, for example, increasing the

time-to-first-token (TTFT) and time-per-output-token (TPOT)

[4].

To address these issues, recent works [4], [7] have proposed

architectures that decouple the prefill and decoding phases

by deploying them on separate hardware resources. In these

architectures, dedicated prefill instances efficiently process

the input prompts, while separate decoding instances handle
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Fig. 1: Prefill cost breakdown of LLaMA-3-70B operations
as measured by [33]. Tested on 4×L40/A100 GPUs (TP=4)
with a batch size of 8, each with 1024 input and 64
output tokens. NCCL’s Ring All-Reduce is applied. The
notion of x-ticks (e.g. L40 FP16/FP16) denotes GPU type,
model weight precision, and communication precision,
respectively
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Fig. 2: Comparison of INA over homogeneous and hetero-
geneous networks. S denotes the switch, GN denotes the
GPU and the associated network NICs.

token-by-token generation. This separation allows for indepen-

dent resource allocation and tailored parallelism strategies for

each phase [4], [7].

Performance issues. A critical challenge in existing archi-

tectures, such as DistServe [4], is coping with the enormous

parameter sizes of current LLMs. To store a large number

of model parameters and support a large number of users

to access cached data, many studies [21], [34] recommend

deploying inference instances across multiple GPU servers.

In such scenarios, communication overhead becomes a major

contributor to inference latency. As shown in Fig. 1, when

enabling parallelism across GPU servers (i.e., synchronization

data are transmitted over 100Gbps Ethernet), the communi-

cation latency of all-reduce accounts for over 65% of the

overall latency on L40 GPU [33], and the latency exceed

75% on A100 due its larger computation FLOPS. However,

existing works [4], [7] only try their best to deploy the LLM

inference instance on an indivisual GPU server as much as

possible, which may sacrify the scalability. Communication

issues across GPU servers are not properly resolved, leading

to reduced throughput and degraded user experience.

C. In-Network Aggregation

To address the high communication overhead in large-scale

distributed systems, researchers and industry practitioners have

proposed various in-network aggregation (INA) schemes [12],

[13], [14], [15], [16], [17], [18], [19], [20]. INA enables

switches to combine packets (e.g., gradients or intermediate

activation values) across workers (e.g., GPU), thereby reducing

the data volume sent over the network and lowering both

latency and bandwidth usage [12], [13].

Performance issues. Existing INA schemes [12], [13] still

suffer from high latency because they assume that aggregated

data is transmitted over homogeneous networks (e.g., Ether-

net). Due to connectivity limitations, packets often traverse

detour paths, resulting in extra delays. Fig. 2 illustrates the

differences between homogeneous and heterogeneous net-

works for data aggregation. These GPU cards are coupled

with RDMA NICs to enable the GPU Direct feature, which

improves transmission efficiency and has been widely adopted

in both industry and academia [35], [36], [37], [38]. In our

example, each GPU server has two GPUs connected via high-

throughput NVLink (e.g., 600GBs), while GPUs across servers

use 100Gbps Ethernet links. We consider a scenario that three

GPUs deploy the same model instance to perform all-reduce

operations using INA. In a homogeneous network (Fig. 2(a)),

the aggregation switch is the core switch S1. For 1MB of

data, two hops of Ethernet links are required, resulting in an

aggregation delay of approximately 160μs. In a heterogeneous

network (Fig. 2(b)), GPUs use NVLink to forward data to

an access switch S2 before traversing an Ethernet link. This

path significantly reduces the delay to about 90μs, nearly 43%

lower than the homogeneous solution. Moreover, offloading

Ethernet traffic to NVLink further reduces congestion and

improves throughput.

III. DESIGN

A. Key Idea and Overview

The goal of HeroServe is to maximize scalability while

minimizing the average token generation latency, subject to

meeting the Service-Level Agreement (SLA). Scalability is

defined as the number of requests served per second, meaning

that a higher scalability implies the system can handle more

concurrent requests. We target the prefill and decode disaggre-

gated LLM inference architecture, which is widely adopted in

many leading LLM inference systems [2], [4], [7], to fully

leverage GPU resources and improve inference efficiency.

The key idea and insight. Unlike existing works that either

deploy inference instances within GPU servers or reply solely

on homogeneous networks to accelerate cross-server commu-

nications, we take a holistic view by optimizing the inference

efficiency across both intra- and inter-GPU deployments in

heterogeneous networks (e.g., Ethernet and NVLink). We

jointly model computation and communication and propose a

load-aware online scheduler that dynamically adjusts commu-

nication strategies (e.g., INA and ring) and transmission paths.

This design effectively exploits heterogeneous links to enhance

inference scalability and reduce token generation latency.

As shown in Fig. 3, the primary function of the scalability-
oriented offline planner is to optimize computation allocation

and communication strategies. It takes system status (e.g.,

network topology and etc) and user requirements (e.g., latency

SLA) as inputs. Its goal is to maximize scalability while

ensuring that latency remains within SLA constraints (see Sec-

tion III-C). This optimization problem is inherently complex
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because it involves dynamic constraints such as changes in

available GPU memory as well as high-dimensional decision

spaces. For instance, the GPU deployment subproblem alone

has a search space on the order of O(N!/(Ptens!)
Ppipe ), not to

mention additional complexities such as shortest path selec-

tion. Since solving this problem in constant time is infeasible,

we design a heuristic algorithm to address this challenge.

The load-aware online scheduler complements the planner

by periodically adjusting the transmission policy. It dynami-

cally switches communication schemes (e.g., INA or ring ag-

gregation) and paths to balance traffic and mitigate congestion

in heterogeneous networks. The policy takes the amount of

synchronization data as input and selects the optimal commu-

nication scheme and path based on the estimated bandwidth

overhead along each potential route. The decision is guided

by a virtual bandwidth utilization ratio maintained for each

path in a policy cost table (as detailed in Section III-D). A

control center is provided to synchronize the virtual bandwidth

utilization ratio across all GPUs.

B. System Model and Basic Notations

Fig. 4 presents the architecture of LLM serving systems.

Where the prefill and decode components are deployed sep-

arately, as adopted in recent systems [2], [7], [4]. As shown

in Fig. 4, each cluster has its own GPU cards, denoted by

V p
g /V d

g , and access switches, denoted by V p
s /V d

s . Note that these

GPU cards are coupled with RDMA NICs to enable the GPU

Direct feature, which improves transmission efficiency and has

been widely adopted in both industry and academia [35], [36],

[37], [38]. These clusters communicate through a core switch,

TABLE I: Input parameters of the offline planer.
Input Parameter Name Symbol
The number of model layers L
The number of hidden layer h
The number of heads A
FFN intermediate size m
Block size in the attention kernel b
Model parameter size (B) R
Input batch size Q
Input length of each request (B) l0, ..., lQ−1

Input token size in the batch (B) Kin = ∑Q−1
i=0 li

Output length of each request (B) O0, ...,OQ−1

Output tokens size (B) Kout = ∑Q−1
i=0 Oi

Squared sum of the input lengths Kin2 = ∑Q−1
i=0 l2

i
The rest of GPU memory capacity (GB) Mg = [M1, . . . ,MK ]

Network topology G = 〈V,E〉
Node set includes switch set Vs = {V p

s ,V d
s }

and GPU set Vg = {V p
g ,V d

g } V = {Vs,Vg}
Edge set E
Edge bandwidth capacity (bps) C = [C(e1), . . . ,C(en)]

The rest of edge bandwidth (bps) B = [B(e1), . . . ,B(en)]

Request arrival rate (r/s) λ
In-network aggregation entry size (B) Mina

SLA latency threshold (s) T pre
sla , T dec

sla

TABLE II: Output parameters of the offline planer.
Output Parameter Name Symbol
Parallel parameters include tensor parallel Pp

tens, Pd
tens,

and pipeline parallel Pp
pipe, Pd

pipe
Pall

The set of prefill GPU IDs K p
g

The set of decode GPU IDs Kd
g

The set of shortest connection path between k and a P(k,a)
The set of in-network aggregation switch includes

the prefill switch V p
ina, the decode switch V d

ina

Vina = {V p
ina,V

d
ina}

The set of in-network aggregation selector includes

the prefill selector α p, the decode selector αd α = {α p,αd}
The set of ring communication selector includes

the prefill selector β p, the decode selector β d β = {β p,β d}
The communication related parameters
α , β , Vina, P(k,a)

CM

enabling independent optimization, maintenance and evolution

of prefill and decode. This architectural separation allows

system designers to tailor hardware to the specific needs of

each cluster: the prefill cluster is compute-bound and benefits

from severs with high computational throughput, whereas the

decode cluster is memory-bound due to the large KV cache,

favoring servers with ample memory capacity [7], [4].

The overall LLM serving system can be modeled as an

undirected acyclic graph G as shown in Fig. 4. The graph

contains a series of GPU nodes V p
g /V d

g and switch nodes

V p
s /V d

s . The direct links between nodes are represented as

edges E. Some edges correspond to Ethernet links, while

others to NVLink connections. Each edge has a maximum

bandwidth C and an available bandwidth B.

After running the offline planer (as detailed in Section

III-C), the deployment locations of GPUs in the prefill and

decode clusters, denoted by K p
g and Kd

g , are obtained. For

each parallel GPU group, we compute the current optimal

communication scheme (i.e., selecting between INA α and

ring communication β ) and the corresponding path P(k,a) (as

listed in Table II).



At the user side, the size of each request is modeled as

li. Given a future batch size Q, the total input token count,

Kin, can be derived (as stated in Table I). Similarly, the total

output token count, Kout , is estimated. To update these values

over time, we utilize state information collected by the online

scheduler module and apply a moving average method to

dynamically update Kin and Kout .

C. Scalability-oriented Offline Planer

In this subsection, we provide a detailed description of how

to model the aforementioned LLM inference tasks based on the

system model introduced earlier. In the following expressions,

the absence of superscripts p (prefill) and d (decode) indicates

that the parameters have identical derivations for both the

prefill and decode clusters.

1) Application Level Metrics: The optimization objective is

to maximize the scalability, defined as the number of served

requests per second, denoted by H. At the same time, the token

generation latency TTFT (Time-To-First-Token) Tpre and the

token production latency TPOT (Time-Per-Output-Token) Tdec
must remain below their respective SLA thresholds. Formally,

the objective is expressed as:

max H =
1

Treq

subject to Tpre ≤ T pre
sla

Tdec ≤ T dec
sla

(1)

Here, Treq is the latency to serve a single arriving inference

request. It can be decomposed as Treq = Tqueue +Tserve, where

Tqueue represents the queuing delay for arriving requests, and

Tserve is the inference latency to generate sufficient tokens for

each user’s request.

We adopt a continuous batching approach. The batch size

adapts to the volume of arriving requests. The adaptation

scheme follows the existing work [8]. We assume that request

arrivals follow a Poisson process. This assumption is justified

by the high predictability of the execution times of LLM

inference tasks, as detailed in [39], [40], [4]. The queuing

delay is estimated using the Pollaczek–Khinchine equation

[40]. When there is insufficient memory to serve all requests,

an additional queuing delay is incurred. This delay is approx-

imated by: Tqueue =
λT 2

serve
2(1−ρ) . Where λ is the request arrival rate

and ρ = λTserve is the utilization ratio. The inference latency

Tserve comprises three components: the communication latency

Tn, the computation latency Tc, and the KV cache transfer

latency Tf from the prefill cluster to the decode cluster. That

is,

Tserve = Tn +Tc +Tf (2)

The token generation latency Tpre is given by

Tpre = T pre
n +T pre

c (3)

where T pre
n and T pre

c are the communication and computation

delays among the parallel GPUs allocated for the prefill

cluster, respectively.

The token production latency Tdec is defined as the delay

between two consecutive output tokens. It includes the com-

munication latency T dec
n and computation latency T dec

c among

the parallel GPUs allocated for the decode procedure, along

with the KV cache transfer latency Tf . Therefore,

Tdec = T dec
n +T dec

c +Tf (4)

Furthermore, the overall communication latency is defined as

Tn = T pre
n +T dec

n and and the overall computation latency as

Tc = T pre
c +T dec

c .

2) Metrics Modeling: For the communication latency Tn,
it is determined by the chosen communication optimization

strategy. It is modeled as:

Tn = Tpp +
S

∑
s

Tm(s) (5)

where Tpp is the synchronization latency among the paral-

lelized pipeline clusters. This latency depends on the num-

ber of parallelized pipelines Ppipe and is given by Tpp =

∑
Ppipe−1

i=1 TPP(i). Here, Tpp(i) is the synchronization latency

between the i-th and (i+1)-th pipeline clusters. In particular,

Tpp(i) = min max
k∈Kg(i+1)

Tk,a (6)

where Kg(i + 1) denotes the set of GPUs in the (i + 1)-th
pipeline group and Tk,a represents the shortest latency from

GPU k to GPU a. In the prefill cluster, the latency is expressed

as T p
k,a = ∑Nh

n=1 Kinh/B(en). Where Nh is the number of hops

from the GPU k to the GPU a. In the decode cluster, the

expression is T d
k,a = ∑Nh

n=1 h/B(en).
The synchronization communication latency for the s-th

step, Tm(s), is computed as:

Tm(s) = α(i) ·Tina(s)+β (i) ·Tring(s) (7)

where the two binary variables α(i) and β (i) select the

synchronization method for the i-th GPU group (i.e., α(i) ∈
{0,1}, β (i) ∈ {0,1}, and α(i)+β (i) = 1). Here, Tina(s) and

Tring(s)are the latencies for the in-network aggregation (INA)

and ring-based approaches, respectively.

The INA latency is decomposed into three phases:

Tina(s) = Tcol(s)+Tagg(s)+Tdis(s) (8)

As introduced in Section II, the in-network aggregation pro-

cedure is detailed as three steps: data collection Tcol(s),
parameter aggregation Tagg(s), and data distribution Tdis(s).

Tcol(s) =
Ptens
max
k=1

T col
k,a (s),∀Xi, j,k = 1 (9)

T col
k,a (s) = ∑

en∈P(k,a)

(
Dk

col(s)
B(en)

) (10)

T col
k,a (s) denotes the data collection latency from the k-th

GPU to the a-th aggregation switch for the s-th calculation

step. Xi, j,k specifies the deployment of the j-th tensor in the i-th
layer of GPU k. Where Dk

col(s) is the number of bits that must



be transferred in the s-th step. For a typical parallel inference,

each layer involves two synchronization steps. The data vol-

ume can be represented as Dk
col = [Dcol(a),Dcol( f )] according

to [4], [41]. where Dcol(a) and Dcol( f ) are the communication

loads for the attention output and FFN layers, respectively,

with Dcol(a) = Dcol( f ) = Kinh. Additional parallelizable steps

may be incorporated similarly.

We treat Tagg(s) as a constant in the programmable switch

(approximately 1 μs as reported in [42], [43]). The distribution

latency Tdis(s) and the corresponding data volume Dk
dis(s) are

configured similarly to Tcol(s) and Dk
col(s).

Tring(s) = 2(Ptens −1)
Dk

rg(s)
minen∈P(k,a) B(en)

,∀en (11)

The latency for the ring-based communication scheme is given

above. In this expression, Dk
rg(s) denotes the expected data

volume for the s-th ring all-reduce step. It can be expressed

as Dk
rg = [Drg(a)+Drg( f )] with Drg(a) = Drg( f ) = Kinh/Ptens.

The bandwidth utilization constraint for the ring scheme

is analogous to that in the previous equation, with Dk
col(s)

replaced by Dk
rg(s).

For the computation latency Tc, it consists of two compo-

nents: the prefill T pre
c and the decode T dec

c and can be inferred

according to the existing works [4], [44]:

T pre
c =

C1

Pp
tens

(4h2Kin +2hmKin)+
C2

b ·Pp
tens

3hKin2 +C3 (12)

T dec
c =

C4

Pd
tensPd

pipe
(4h2 +2hm)+

C5

Pd
tensPd

pipe
3hKin +C6 (13)

Where C1,C2,C4, and C5 denote the linear fitting parameters

for computational latency. C3 is used to quantify other over-

heads like Python Runtime, system noise and so on [4], while

C6 denotes the overhead of filling the parallelizable pipeline

in the decoding procedure [44]. Similar to the existing works,

we use a profiling and interpolation approach to figure out the

values of C1 to C6.

For the KV cache transferring latency Tf , it can be

inferred as follows:

Tf = max
k∈Kp

T p
k (14)

where T p
k is the maximum KV cache transmission latency

for each prefill GPU k ∈ Kp. During KV cache computation,

all prefill GPUs simultaneously transmit their KV caches to

the associated decode GPUs (called the prefill/decode GPU

pairs that are allocated with the same i-th model layer and

j-th tensor segment). Due to different routing paths, each

prefill/decode GPU pair incurs a different delay. Thus, the

overall latency is determined by the longest delay.

For each prefill GPU k, the transmission latency is modeled

as

T p
k = ∑

z∈Kd

∑
(i, j)∈Rk,z

Ti, j(k,z) (15)

where Ti, j(k,z) denotes the latency for transferring the KV

cache corresponding to the i-th layer and j-th tensor segment

Algorithm 1: Scalability-oriented Offline Planer.

Input : Parameters shown in Table I.
Output: Parameters shown in Table II.

1 max H=0;
2 candi = gen tp pp candi(Vg, R, Mg, R frac, max candi);
3 foreach Pall ∈ candi do
4 thread process prefill cluster
5 m req = R/(Pp

tens ·Pp
pipe ·R f rac);

6 V p′
g ← del GPU in V p

g with memory < m req;

7 if len(V p′
g ) < Pp

tens ·Pp
pp then

8 Continue to the next configuration;

9 CM, Kg, T pre
n =est network latency(Pall , V

′
g, Kin);

10 T pre
c = est compute latencyp(Pall , Kin);

11 thread process decode cluster
12 m req = R/(Pd

tens ·Pd
pipe ·R f rac);

13 V d′
g ← del GPU in V d

g with memory < m req;

14 if len(V d′
g ) < Pd

tens ·Pd
pp then

15 Continue to the next configuration;

16 CM, Kg, T dec
n =est network latency(Pall , V

′
g, Kout );

17 T dec
c = est compute latencyd(Pall , Kin, Kin2, Kout );

18 Tf =est kvtrans latency(Kin, A, Pall);
19 Update Tpre, Tdec, H based on Eq (1), (4), (5);

20 if Tpre ≤ T pre
sla and Tdec ≤ T dec

sla and H > max H then
21 Update output parameters;

from prefill GPU k to decode GPU z. This latency is the sum

of the delays across all hops on the path from k to z: Ti, j(k,z)=
∑H(k,z)

h=1 [Di, j/B(eh)]. where H(k,z) is the total number of hops,

Di, j is the amount of data to be transferred for the i-th layer

and j-th tensor segment. The data volume Di, j is given by

Di, j = 2Kinh/A
Ptens/A�.

3) Solving the Problem: We observe that after modeling

the above LLM inference task, the parameter space in Table

II is too large to solve in constant time. To address this

issue, we simplify the problem using the following heuristic

strategies while minimizing their impact on the solution: 1) For

communication latency, we first offline compute the pairwise

shortest path matrix P(k,a) and minimum latency matrix D(i, j)
for all nodes. Next, we group GPUs for tensor parallelism

based on interconnection latency using a clustering method.

Finally, random perturbations are utilized to further improve

the efficiency. 2) For computational latency, we compute the

minimum required GPUs for Pall combinations based on Q
and Mg, associated with an empirical upper bound. 3) For KV
cache transfer latency, we use the offline computed minimum

latency matrix D(i, j) and solve for the latency according to

Equation 14.

Algorithm 1 presents the procedure of scalability-oriented

offline planer. 1) Determine the minimum GPUs. We calcu-

late the minimum number of GPUs needed for inference based

on the model parameter memory R and the reserved memory

ratio R f rac at each server: R/∑K
k=1 Mg(k)R f rac. Using

this minimal count, we generate combinations of Ppipe and

Ptens, returning up to max candi candidate configurations. (Our

experiments show that setting max candi = twenty usually



Algorithm 2: Estimate network latency.

Input : Ptens, Ppp, V
′
g, Kin/out .

Output: CM, Kg, Tn.
1 case bandwidth utilization is update
2 D(i, j) = gen latency matrix(V

′
g, alg=dijkstra);

3 P(k,a) = store shortest path(V
′
g, alg=dijkstra);

4 Kg = group gpu(V
′
g, Ppp, D(i, j), alg=k-means-constrained);

5 Initialize Te[i] for each group to zero;
6 foreach group ∈ Kg do
7 Find Vs with the smallest delay to the group while

meeting memory constraints.;
8 group.append(Vs); Vina.append(Vs);

9 foreach group ∈ Kg do
10 Te[group id] = getlatency(group, D(i, j), Kin/out );

11 Store path for each GPU in group based on P(k,a);

12 foreach group ∈ Kg do
13 improvement ← true;
14 while improvement do
15 improvement ← false;
16 g tmp ← random.select group(cluster);
17 group’, g tmp’ ← Randomly swap group and g tmp;
18 newLatency = getlatency(group’, D(i, j), Kin/out );

19 if newLatency < Te[group id] then
20 Te[group id] = newLatency;
21 Update Kg with group’ and g tmp’;
22 improvement ← true;

23 Estimate (Ppp-1) inter group latency Ti[];
24 Tn = sum(Te) + sum(Ti);
25 procedure getlatency(group, D(i, j), Kin/out )
26 Tina = compute ina latency(group, D(i, j), Kin/out );

27 Tring = compute ring latency(group, D(i, j), Kin/out );

28 if Tina > Tring then
29 β .append(group id); return Tring;

30 else
31 α .append(group id); return Tina;

yields near-optimal solutions.) 2) Estimate overheads. Two

threads run simultaneously to compute the computation and

communication overheads. Both processes are similar and

differ only in the input parameters. We invoke the network

overhead estimation function (Algorithm 2) and compute the

overheads using Equations 12 and 13. Given the sending and

receiving nodes, Dijkstra’s algorithm is applied to compute

the KV cache transfer latency between the prefill and decode

clusters. 3) Select the optimal configuration. We return

the configuration that meets the SLA latency requirements

while maximizing throughput. Experimental results indicate

that our algorithm typically finds a solution within 10 minutes,

a reduction of 28.57% compared to DistServe [4].

Algorithm 2 estimates the network latency as follows: 1):
GPU grouping. We partition all GPUs into Ppipe groups, each

containing Ptens GPUs using a k-means-constrained approach

[45]. 2) Communication mode selection. We compute the

communication latency for both the INA and ring schemes

using Equation 8 and Equation 11 and choose the mode with

the lower latency. 3) Perturbation scheme. To avoid local

optima, GPUs are randomly swapped between groups, and

the communication latency is recalculated. If a swap reduces

latency, the new assignment is kept. Our experiments show

that the algorithm typically converges within five iterations.

D. Load-aware Online Scheduler

To improve inference throughput and minimize token gen-

eration latency, it is crucial to evenly distribute request traffic

across heterogeneous networks (e.g., Ethernet and NVLink) to

maximize bandwidth utilization and mitigate congestion. To

achieve this, we propose a load-aware online scheduler that

takes the number of tokens (including input and generated

tokens) as input and dynamically adjusts the communication

scheme (INA and ring) and transmission path to distribute

traffic efficiently.

A policy c is defined as a set of routing configurations,

e.g., the transmission scheme (INA or ring), the next hop, the

transmission path and etc. Given the observed transmission

data D, we define the policy cost function J(c,D) as the max-

imum bandwidth utilization ratio among all transmission links

involved with c. For example, a policy using the INA scheme

may have GPU1 and GPU2 transmit data to an aggregation

switch via two separate paths, with the cost being the higher

utilization ratio of these paths. Then the optimization goal can

be formulated as follows:

c∗ = argmin
c∈C

J(c,D) (16)

The optimal policy c∗ is defined as the one that minimizes

the policy cost that is expressed as J(c,D) = bc + δ . Here,

bc represents the previous cost of the policy c. The term δ ,

calculated as D/(Tubc), represents the estimated additional

bandwidth utilization when the transmission task is allocated

to policy c, and Tu is the estimation window.

After the optimal policy c∗ is selected, the increased band-

width from data transmission updates all related policy as

shown below:

b
′
c = bc +

⎧⎪⎨
⎪⎩

D
Tubc

, if c = c∗,
D

Tubc
· f(c∗,c), if c �= c∗.

(17)

The load penalty function f(c∗,c) quantifies the impact of

selecting c∗ on unselected policies c. Since selected and

unselected policies may share intersecting links, the added

load on c∗ increases the overhead on its edges, which in turn

adds traffic on the shared links of unselected policies. As f(c∗,c)
depends on the shared links among multiple paths, it is updated

periodically based on the following formula:

f(c∗,c) = (1− γ) · f(c∗,c) + γ ·W(c∗,c) (18)

Here, W(c∗,c) = ∑e∗∈c∗∩c B(e∗)/∑e∈c B(e) represents the shar-

ing ratio between policies c∗ and c, considering the network

topology and the bandwidth utilization of intersecting links

B(e∗), which are monitored by GPUs and programmable

switches. The parameter γ is a smoothing factor that controls

the update speed of the penalty function.



Fig. 5: The example of policy selection table stored in
GPUs. Np denotes the next hop to the destination. c1
denotes the policy of using INA while c2 denotes the policy
of using ring.

Figure 5 illustrates a policy cost table stored on GPUs. The

table details how GPUs select transmission paths and schemes

and how they synchronize these selections. When the NCCL

ncclAllreduce function is called, each GPU (e.g., GN1,

GN2, and GN3) selects the lowest-cost policy from the table.

This policy prioritizes its corresponding route and ensures the

underlying layer executes the appropriate forwarding entry. In

this example, suppose B[e5] is lower than B[e3], and policy c1

is selected. Next, all GPUs report their selection results to the

centralized controller HeroServe. The controller instructs all

GPUs (e.g., GN1, GN2, GN3, and GN4) to update their policy

cost tables synchronously according to Equation 17. These

actions are triggered periodically when the ncclAllreduce
function is executed.

IV. IMPLEMENTATION

We prototype HeroServe with a centralized scheduler and

agents on both GPU servers and switches to coordinate

model deployment and enforce the online transmission strategy

adaptation. The implementation comprises over 5.3K lines of

Python code for the controller, over 400 lines of P4 code for

the programmable switch data plane, and over 2K lines of

C++ code on GPU servers. The GPU-side implementation is

built on top of SwiftTransformer [46] which supports high

performance model and pipeline parallelism.

Agent on Programmable Switches. 1) Data Plane. In our

design, the data plane implements a synchronous in-network

aggregation (INA) mechanism. The aggregation memory space

is organized as a pool of fixed-size aggregator slots across

multiple switch pipelines. aggregation table is an exact–match

table with keys based on the port and an aggregator ID

(or index) is used to map incoming INA update packets

to corresponding aggregator slots. The value field stores a

partially aggregated vector (whose elements are represented

as fixed–point integers) and a counter indicating the number

of contributions received.

2) Control Plane. The central scheduler uniformly allocates

and recycles aggregator slots. The switch control plane pro-

vides APIs that allow for high–speed updates of the aggre-

gation table entries via vendor–provided low–latency runtime

libraries (e.g., using the switch’s native runtime API) [43]. It

periodically polls hardware counters from the data plane to

Fig. 6: Testbed. GPU servers and switches are connected
with 2tracks.

obtain link utilization metrics. These statistics are then used

to update the cost parameters in the online scheduling process.

Agent on GPU Servers. On GPU servers, an agent operates

a load-aware online scheduler that dynamically updates route

costs using lightweight vectorized operations (e.g., NumPy)

based on the current batch size and token generation require-

ments. It then selects the optimal transmission mode (INA

or ring-based) and embeds this decision in the packet headers.

Additionally, the agent retrieves the bandwidth utilization ratio

of NVLink via the DCGM (Data Center GPU Manager) tool

[47].

Central Scheduler. The central scheduler is implemented

as a Python application that periodically aggregates static

topology data (e.g., GPU server configurations and switch

capacities) and dynamic network performance metrics from

hardware counters and NIC monitors. After solving the op-

timization problem, the scheduler disseminates the computed

policies (including aggregator assignments, routing cost base-

lines, and transport mode preferences) via high–speed gRPC to

agents on programmable switches and GPU servers, enabling

a centralized control–plane update loop that rapidly adapts to

load variations and ensures sustained high throughput and low

latency across the distributed inference serving system.

V. EVALUATION

We evaluate HeroServe through a combination of small-

scale testbed experiments and large scale simulations, and

comparing it against three of the most relevant existing solu-

tions, i.e., DistServe [4], DistServe-ATP [12], and DistServe-

SwitchML (DS-SwitchML) [13]. Among them, DS-ATP and

DS-SwitchML represent the integration of ATP asynchronous

INA and SwitchML synchronous INA solutions into Dist-

Serve, respectively, to improve the efficiency of network

transmission. All algorithms are evaluated based on the pre-

fill/decode disaggregated architecture, and all enable con-

tinuous batch processing technology to improve inference

throughput.

Testbed Deployment. As illustrated in Fig. 6, the testbed

comprises six servers and two programmable switches

equipped with Tofino 1 ASIC [42]. One server acts as the PS,

while another server acts as the transmission/reception server

that replays the traffic of ShareGPT [24] and LongBench

[25]. The remaining four GPU servers (e.g., two A100 servers

and two V100 servers) serve as workers to hosting inference

instances. Each GPU server contains four GPU cards with

NVLinks enabled. A100 has 40GB memory while V100 has

32GB memory. Each server is equipped with two Mellanox



ConnectX-6 100G dual-port NICs that have four 100Gbps

ports in total, which indicates that each GPU card can have

different Ethernet links to the switch. The GPU network card

of each server is cross-connected with the uplink switch to

achieve high-availability deployment (as shown in Fig. 6). Fig.

6 shows the connection scheme of 2tracks, where x in xtracks

represents the number of access switches.

Simulation Settings. We perform simulations on a physical

server equipped with an Intel Core i9-9900K processor and an

NVIDIA GeForce RTX 2080 Ti GPU. We utilize a high fielity

deep learning simulator APEX [48] to perform the large scale

simulation. It supports most common parallelization strategies

and provides a enhance memory system modeling to support

accurate modeling of in-network collective communication

and disaggregated memory systems. In our simulation, we

deployed 1200 A100 GPU servers (each equipped with 8

GPUs) to evaluate two network configurations. The first,

the 2tracks configuration, utilizes GPU units of 6 servers

connected by 2 access switches, amounting to 400 access

switches and 27 core switches in total. The second, the 8tracks

configuration, employs GPU units of 16 servers connected

via 8 access switches, with an overall deployment of 600

access switches and 280 core switches, simulating a scenario

with more evenly distributed traffic across a larger number of

switches.

Model and workloads setup. Similar to prior work on LLM

serving [4], we choose the OPT [26] model series, which is

a representative LLM family widely used in academia and

industry. We use FP16 precision in all experiments. We use

the ShareGPT dataset [24] for the chatbot application (with the

SLA of 2.5s TTFT and 0.15s TPOT) and the LongBench [25]

dataset for the summarization application (with the SLA of

15s TTFT and 0.15s TPOT) to test the OPT-66B model on the

testbed. For large scale simulation, we test the above chatbot

(with the SLA of 4s TTFT and 0.2s TPOT) and summarization

(with the SLA of 25s TTFT and 0.2s TPOT) on OPT-175B

model under different switch tracks settings (i.e., 2tracks and

8tracks). Since all the datasets do not include timestamps, we

generate request arrival times using a Poisson distribution with

different request rates.

Results reveal that:

• HeroServe achieves high scalability: it is 1.53×, 1.42×
and 1.33× better than DistServe, DS-ATP, and DS-

SwitchML respectively.

• HeroServe achieves lowest latency, it significantly re-

duces per-token latency (TPOT) by about 18.6%-49.2%

compared to its counterparts.

• HeroServe can consistently achieve the highest in-

network aggregation throughput varying message size

from 4MB to 64MB.

A. Testbed Experiments

Scalability. The SLA attainment represents the fraction of

requests that meet the latency SLA. In our evaluation, we

focus on the maximum per-GPU rate that the system can

handle while satisfying the latency requirements for over 90%
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Fig. 7: Testbed. Scalability and latency over OPT-66B.

of requests. As shown in Fig. 7(a) and Fig. 7(c), HeroServe

achieves superior scalability than existing solutions in both

chatbot and summarization scenarios. Specifically, in the chat-

bot scenario, HeroServe is 1.53×, 1.42× and 1.33× better than

DistServe, DS-ATP, and DS-SwitchML, respectively; while in

the summarization scenario, it is 1.68×, 1.58× and 1.35×
better than these baselines. This improvement is primarily at-

tributed to its optimal model partitioning and dynamic alloca-

tion strategy that leverages both high-bandwidth NVLink and

Ethernet for inter-server communication, effectively reducing

bottlenecks under high request loads.

Latency. As shown in Fig. 7(b) and Fig. 7(d),

HeroServe reduces per-token latency (TPOT) by approxi-

mately 18.6%–49.2% compared to its counterparts. This im-

provement is largely due to its ability to minimize communica-

tion delays through integrated, optimized cross-GPU routing

over heterogeneous networks, effectively reducing inference

synchronization time. In the summarization scenario, although

a looser TTFT SLA is allowed due to longer inputs, HeroServe

still reduces initial delay (TTFT) by roughly 15.2%–45.2% and

the per-token delay (TPOT) by around 11.2%–27.3%, ensuring

rapid token generation even when processing lengthy texts.

B. Simulation Experiments

Scalability and Latency. As shown in Fig. 8, HeroServe

boosts scalability by approximately 1.09×-1.83× in the

8tracks scenario. In larger model deployments, where more

GPUs are used and inter-GPU communication demands, the

benefits of HeroServe are even more pronounced than in the

OPT-66B scenario. Additionally, HeroServe reduces the per-

token delay by roughly 28.4%–42.1%, a crucial improvement

given the cumulative delays in large-scale models. In the

2tracks scenario, scalability improvements reach 1.12×-1.94×
compared to its counterparts, as the limited Ethernet bandwidth

causes DS-ATP and DS-SwitchML—relying solely on Ether-
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Fig. 8: Simulation. Scalability with various track settings
over OPT-175B.
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Fig. 9: Simulation. In-network Aggregation.

net for synchronization—to suffer from increased congestion

and degraded performance.

In-network Aggregation Throughput. As shown in Fig.

9, HeroServe achieves the highest in-network aggregation

throughput compared to existing approaches. Specifically,

in the 2tracks scenario, HeroServe improves throughput by

71.7%, 26%, and 20.1% over DistServe, DS-ATP, and DS-

SwitchML, respectively. This performance is mainly due to

its heterogeneous communication scheduling strategy, which

leverages additional network bandwidth to transfer data more

efficiently.

Memory Efficiency of Storing KV Cache. As depicted in

Fig. 10, HeroServe consistently maintains the lowest memory

utilization in both 2tracks and 8tracks scenarios. Its high

transmission efficiency results in more frequent KV cache

refreshes, reducing memory usage. Additionally, an online

algorithm adaptively adjusts the communication mode and

path based on the request load, evenly distributing traffic

across the heterogeneous network, reducing congestion, and

expediting data forwarding. This approach keeps the number

of concurrently processed user requests in memory at a lower

level.
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Fig. 10: Simulation. Memory efficiency, summarization,
OPT-175B, 0.07 req/s.

VI. RELATED WORK

Inference Serving Systems. There has been plenty of work

on inference serving recently [2], [5], [7], [4], [49], [50], [51],

[8], [6] Among them, DistServe [4] and SplitWise [7] improve

the performance of large language models (LLMs) serving by

disaggregating the prefill and decoding computation, eliminat-

ing prefill-decoding interferences. AlpaServe [49] focuses on

employing model parallelism to statistically multiplex the GPU

execution thus improving the resource utilization. However,

existing systems lack optimization for tensor-parallel com-

munication, leading to significant delays. Deploying LLMs

on extensive GPU clusters exacerbates latency and through-

put issues. In contrast, HeroServe leverages heterogeneous

communication links and unified computation-communication

modeling to markedly enhance distributed deployment perfor-

mance, reduce token generation delays. FastServe [6] uses

preemptive scheduling to minimize latency with a skip-join

Multi-Level Feedback Queue scheduler. FlashCommunication

[33] proposes a low-bit compression technique designed to al-

leviate the tensor parallelism communication bottleneck during

inference. Orca [8] proposes a iteration-level scheduling that

schedules execution at the granularity of iteration (instead of

request) where the scheduler invokes the execution engine to

run only a single iteration of the model on the batch. They are

all orthogonal to my work.

In-network Aggregations. Recent works on In-network

Aggregations (INA) can be classified into three cate-

gories. First, switch offloading techniques (e.g., ATP[12],

SwitchML[13], PA-ATP[14], ZEBRA[52], DSA[53], NetRe-

duce [20], ASK [18]) accelerate training by offloading gradient

aggregation to programmable switch dataplanes, incorporating

approaches such as progress-aware transmission and priority-

based preemption. Second, network-aware scheduling and

resource management approaches (e.g., NetPack [16], INAlloc

[19]) optimize job placement by leveraging dynamic estima-

tion and precise valuation of compute, bandwidth, and switch

memory resources. Third, INA routing and system frameworks

(e.g., In-Go [17], AggTree [54], FreeINA [55], NetRPC [56],

ClickINC [15]) streamline in-network communication through

refined routing algorithms, batch size adjustments, and unified

programming abstractions for INC-enabled applications. How-

ever, all these designs target Ethernet-based INA transmissions

without considering the challenges of heterogeneous networks

(i.e., the NVLink and Ethernet), leaving room for HeroServe

to significantly improve the LLM inference scalability and



reducing the token generation latency.

VII. CONCLUSION AND FUTURE WORKS

This paper introduces HeroServe, an inference serving

system that accelerates data synchronization by leveraging

heterogeneous networks. HeroServe employs a scalability-

oriented offline planner that formulates a comprehensive op-

timization model to jointly consider computation allocation

and communication scheduling. To deal with the dynamic

inference traffic, we propose a load-aware online scheduler that

continuously monitors current traffic and updates lightweight.

We prototype HeroServe on a testbed consisting of six servers

and two programmable switches. Experimental results show

that HeroServe improves scalability by 1.53× while maintain-

ing the latency SLA compared to the state-of-the-art solution.

In the future, there are several avenues to explore. First,

for scenarios without NVLink, we will investigate how to

leverage high-performance PCIe bandwidth for intra-server

communication while avoiding performance degradation due

to cross-NUMA effects. Additionally, we plan to design a

mechanism that enables rapid scaling in and out to achieve

finer-grained scheduling of computational resources.

VIII. ACKNOWLEDGMENTS

This work is supported by the National Natural Science

Foundation of China (No. 92267105), Guangdong Basic and

Applied Basic Research Foundation (No. 2023B1515130002),

Guangdong Special Support Plan (No. 2021TQ06X990),

Key Research and Development and Technology Trans-

fer Program of Inner Mongolia Autonomous Region

(2025YFHH0110), Shenzhen Basic Research Program (No.

JCYJ20220818101610023, KJZD20230923113800001).

REFERENCES

[1] I. D. Corporation, “Worldwide ai and generative ai spending guide,”
2023. [Online]. Available: https://www.idc.com/getfile.dyn?containerId=
IDC P33198&attachmentId=47522841

[2] DeepSeek-AI, D. Guo, and etc., “Deepseek-r1: Incentivizing reason-
ing capability in llms via reinforcement learning,” arXiv preprint
arXiv:2501.12948, 2025.

[3] T. Guardian, “Chatgpt reaches 100 million
users two months after launch,” 2023. [On-
line]. Available: https://www.theguardian.com/technology/2023/feb/02/
chatgpt-100-million-users-open-ai-fastest-growing-app

[4] Y. Zhong, S. Liu, J. Chen, J. Hu, Y. Zhu, X. Liu, X. Jin, and H. Zhang,
“Distserve: disaggregating prefill and decoding for goodput-optimized
large language model serving,” in Proceedings of USENIX OSDI, 2024.

[5] A. Agrawal, N. Kedia, A. Panwar, J. Mohan, N. Kwatra, B. Gulavani,
A. Tumanov, and R. Ramjee, “Taming Throughput-Latency tradeoff in
LLM inference with Sarathi-Serve,” in Proceedings of USENIX OSDI,
2024.

[6] B. Wu, Y. Zhong, Z. Zhang, S. Liu, F. Liu, Y. Sun, G. Huang, X. Liu, and
X. Jin, “Fast distributed inference serving for large language models,”
arXiv preprint arXiv:2305.05920, 2024.

[7] P. Patel, E. Choukse, C. Zhang, A. Shah, I. Goiri, S. Maleki, and
R. Bianchini, “Splitwise: Efficient generative llm inference using phase
splitting,” in Proceedings of ACM/IEEE ISCA, 2024.

[8] G.-I. Yu, J. S. Jeong, G.-W. Kim, S. Kim, and B.-G. Chun, “Orca: A
distributed serving system for Transformer-Based generative models,” in
Proceedings of USENIX OSDI, 2022.

[9] W. Kwon, Z. Li, S. Zhuang, Y. Sheng, L. Zheng, C. H. Yu, J. Gonzalez,
H. Zhang, and I. Stoica, “Efficient memory management for large
language model serving with pagedattention,” in Proceedings of ACM
SOSP, 2023.

[10] NVIDIA, “Nvidia connectx infiniband adapters,” 2025. [Online]. Avail-
able: https://www.nvidia.com/en-us/networking/infiniband-adapters/

[11] Y. Zhang, Y. Liu, Q. Meng, and F. Ren, “Congestion detection in lossless
networks,” in Proceedings of ACM SIGCOMM, 2021.

[12] C. Lao, Y. Le, K. Mahajan, Y. Chen, W. Wu, A. Akella, and M. Swift,
“ATP: In-network aggregation for multi-tenant learning,” in Proceedings
of USENIX NSDI, 2021.

[13] A. Sapio, M. Canini, C.-Y. Ho, J. Nelson, P. Kalnis, C. Kim, A. Krish-
namurthy, M. Moshref, D. Ports, and P. Richtarik, “Scaling distributed
machine learning with In-Network aggregation,” in Proceedings of
USENIX NSDI, 2021.

[14] Z. Li, J. Huang, T. Zhang, S. Zhou, Q. Wang, Y. Li, J. Liu, W. Jiang, and
J. Wang, “Pa-atp: Progress-aware transmission protocol for in-network
aggregation,” in Proceedings of IEEE ICNP, 2023.

[15] W. Xu, Z. Zhang, Y. Feng, H. Song, Z. Chen, W. Wu, G. Liu, Y. Zhang,
S. Liu, Z. Tian, and B. Liu, “Clickinc: In-network computing as a service
in heterogeneous programmable data-center networks,” in Proceedings
of the ACM SIGCOMM, 2023.

[16] B. Zhao, W. Xu, S. Liu, Y. Tian, Q. Wang, and W. Wu, “Training
job placement in clusters with statistical in-network aggregation,” in
Proceedings of ACM ASPLOS, 2024.

[17] J. Bao, G. Zhao, H. Xu, H. Wang, and P. Yang, “Ingo: In-network
aggregation routing with batch size adjustment for distributed training,”
in Proceedings of IEEE/ACM IWQoS, 2024.

[18] Y. He, W. Wu, Y. Le, M. Liu, and C. Lao, “A generic service to provide
in-network aggregation for key-value streams,” in Proceedings of ACM
ASPLOS, 2023.

[19] B. Zhao, C. Liu, J. Dong, Z. Cao, W. Nie, and W. Wu, “Enabling
switch memory management for distributed training with in-network
aggregation,” in Proceedings of IEEE INFOCOM, 2023.

[20] S. Liu, Q. Wang, J. Zhang, W. Wu, Q. Lin, Y. Liu, M. Xu, M. Canini,
R. C. C. Cheung, and J. He, “In-network aggregation with transport
transparency for distributed training,” in Proceedings of ACM ASPLOS,
2023.

[21] R. Y. Aminabadi, S. Rajbhandari, M. Zhang, A. A. Awan, C. Li, D. Li,
E. Zheng, J. Rasley, S. Smith, O. Ruwase, and Y. He, “Deepspeed
inference: Enabling efficient inference of transformer models at unprece-
dented scale,” arXiv preprint arXiv:2207.00032, 2022.

[22] N. Gebara, M. Ghobadi, and P. Costa, “In-network aggregation for
shared machine learning clusters,” in Proceedings of Machine Learning
and Systems, vol. 3, 2021.

[23] “Nvidia a100,” 2025. [Online]. Available: https://www.nvidia.com/
en-us/data-center/a100/

[24] “Sharegpt teams,” 2023. [Online]. Available: https://sharegpt.com/
[25] Y. Bai, X. Lv, and etc., “Longbench: A bilingual, multitask benchmark

for long context understanding,” arXiv preprint arXiv:2308.14508, 2024.
[26] S. Zhang, S. Roller, and etc., “Opt: Open pre-trained transformer

language models,” arXiv preprint arXiv:2205.01068, 2022.
[27] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,

L. Kaiser, and I. Polosukhin, “Attention is all you need,” in Proceedings
of NIPS, 2017.

[28] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-
Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M. Ziegler,
J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray,
B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever,
and D. Amodei, “Language models are few-shot learners,” in Proceed-
ings of NIPS, 2020.

[29] L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. L. Wainwright, P. Mishkin,
C. Zhang, S. Agarwal, K. Slama, A. Ray, J. Schulman, J. Hilton,
F. Kelton, L. Miller, M. Simens, A. Askell, P. Welinder, P. Christiano,
J. Leike, and R. Lowe, “Training language models to follow instructions
with human feedback,” in Proceedings of NIPS, 2022.

[30] J. Kaplan, S. McCandlish, T. Henighan, T. B. Brown, B. Chess, R. Child,
S. Gray, A. Radford, J. Wu, and D. Amodei, “Scaling laws for neural
language models,” arXiv preprint arXiv:2001.0836, 2020.
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