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Abstract—Advances in large language models (LLMs) have
opened up new possibilities across various fields, fueling a new
wave of interactive AI applications such as DeepSeek and Chat-
GPT. Inference serving systems play a crucial role in supporting
these applications. Recent research indicates that when cross-
server parallelization is enabled in inference serving systems, data
synchronization overhead can exceed 65% of the total inference
delay, making the reduction of communication overhead essential
for speeding up inference. While existing systems accelerate
cross-server communications by offloading synchronization oper-
ations to programmable switches, they often suffer from limited
aggregation throughput under bursty traffic conditions, posing
challenges for homogeneous network environments.

To address these challenges, we propose HeroServe, an in-
novative inference serving system that leverages heterogeneous
networks to accelerate data synchronization in distributed clus-
ters. Our approach enables a fast and scalable inference serving
system by employing an offline planner for joint computation
allocation and communication scheduling, along with an online
scheduler for dynamic traffic management and load balanc-
ing. We implement a prototype on a testbed comprising six
servers and two programmable switches. Experimental results
demonstrate that HeroServe improves scalability by 1.53x while
achieving lower latency compared to state-of-the-art solutions.

I. INTRODUCTION

According to IDC projections, the global interactive Al
market is expected to reach nearly $150 billion by 2027,
with a compound annual growth rate (CAGR) of 85.7% [1].
Advances in large language models (LLMs) have opened up
new possibilities across various fields, fueling a new wave of
interactive Al applications such as DeepSeek [2] and ChatGPT
[3]. Inference serving systems are vital for supporting LLM-
based interactive Al applications [4], [5]. To retain tens of
millions of daily users, these applications require low-latency
inference and efficient concurrent request handling [6], [7].

Existing inference service systems improve efficiency
through batch scheduling [8], instance deployment optimiza-
tion [4], [7], and host memory fragmentation reduction [9].
However, these approaches typically focus on scenarios where
models are deployed on a single GPU server or in configura-
tions where multiple GPU servers are interconnected via high-
bandwidth networks (e.g., InfiniBand [10]). Such networks are
assumed to provide stable high-throughput transmission with
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negligible latency. In contrast, the work in [11] demonstrates
that InfiniBand can also experience congestion under bursty or
highly competitive traffic conditions, resulting in throughput
drops exceeding 60% and doubling latency. Therefore, reduc-
ing communication overhead is critical for achieving faster
inference speeds.

Recently, a family of In-Network Aggregation (INA) solu-
tions has been proposed to accelerate cross-server communi-
cation in distributed systems [12], [13], [14], [15], [16], [17],
[18], [19], [20]. These solutions achieve performance gains
by offloading key communication behaviors (i.e., collective
communication operations [21]) from GPU servers to pro-
grammable switches [12], resulting in fewer communication
hops and reduced synchronization load. However, existing INA
algorithms still suffer from low aggregation throughput in
homogeneous networks (e.g., Ethernet) [22] when faced with
bursty traffic that induces network congestion. For example,
[22] shows that aggregation throughput can degrade by nearly
78% under bursty conditions, which severely impacting the
scalability of inference serving systems.

To overcome these performance issues, we propose an
innovative approach, HeroServe, which leverages heteroge-
neous networks (e.g., combining inter-server links like Eth-
ernet with intra-server links such as NVLink) to accelerate
cross-server communications in distributed clusters. Unlike
existing approaches that rely solely on homogeneous networks,
HeroServe exploits the strengths of high-bandwidth NVLink
(e.g., 600GBs in A100 [23]) and 100Gbps Ethernet to sub-
stantially increase aggregation throughput, alleviate network
congestion, and support faster, more scalable inference serving
for a larger number of users (as evaluated in Section V).

However, designing an inference serving system over het-
erogeneous networks introduces significant challenges. Chal-
lenge 1: joint optimization of computation allocation and
communication scheduling in heterogeneous environments.
This problem is characterized by dynamic constraints (e.g.,
changes in available GPU memory during the allocation and
release of model instances) and a high-dimensional deci-
sion space. For example, the computation resource allocation
subproblem alone yields a search space on the order of



O(N!/(Pens!)Frire)!, further complicated by factors such as
shortest path selection for communication. To address this
challenge, we propose a scalability-oriented offline planner
that integrates asynchronous processing with heuristic algo-
rithms. The planner formulates a comprehensive joint op-
timization model for both computation and communication.
Heuristic strategies are employed to reduce the overall search
space, and the global solution is fine-tuned through techniques
such as random perturbations. Furthermore, multiple compu-
tations (e.g., constructing an offline matrix of node-to-node
shortest paths) are scheduled asynchronously to further reduce
problem-solving overhead.

Challenge 2: dynamic traffic management and load bal-
ancing. The dynamic, bursty nature of inference traffic leads to
fluctuating loads on heterogeneous networks. In real time, se-
lecting the best transmission path and communication scheme
is difficult because of variable traffic volume and differing link
utilization. To tackle this challenge, we propose a load-aware
online scheduler that continuously monitors current traffic and
updates lightweight, distributed tables tracking scheduling pol-
icy costs and shared link utilization. By dynamically adjusting
the communication strategy and selecting the most favorable
transmission routes, the online scheduler effectively balances
network resources across both high speed intra-server links
and inter-server Ethernet connections, reducing congestion and
improving overall inference throughput and latency.

We prototype HeroServe on a testbed consisting of six
servers and two programmable switches, and simulate it on
large-scale clusters, demonstrating its capability to achieve
the scalable and fast inference serving system at the same
time (Section V). We evaluate HeroServe with production
traces [24], [25]. In particular, we evaluate the end-to-end
performance of HeroServe for OPT- 66B and OPT-175B [26]
(an open-source LLM similar to the largest GPT-3 model) on
NVIDIA GPUs. The experimental results show that HeroServe
improves scalability by 1.53 %, 1.42x and 1.33x, while main-
taining the latency SLAs compared to state-of-the-art solutions
DistServe [4], DS-ATP [12] and DS-SwitchML [13].

This paper makes the following contributions:

o We analyze existing inference serving systems for large
language models and observe a key limitation that current
in-network aggregation algorithms are primarily designed
for homogeneous networks. This design choice leads to
network congestion and lower aggregation throughput
under bursty traffic conditions (§1I).

o We design HeroServe, an inference serving system that
accelerates data synchronization by leveraging heteroge-
neous networks. HeroServe employs an offline planner for
joint computation allocation and communication schedul-
ing together with an online scheduler for dynamic traffic
management and load balancing (§1II).

o We implement a HeroServe prototype on a testbed con-
sisting of six servers and two programmable switches and

IN is the number of GPUs to be partitioned into Ppipe pipeline groups of
equal size Pens tensor GPUs, i.e., N = Bens - Ppipe-

evaluate it using production traces and large language
models on NVIDIA GPUs. The experiments demonstrate
that HeroServe significantly improves scalability and re-
duces latency compared to state-of-the-art solutions. (§1V
and §V).

II. BACKGROUND AND MOTIVATIONS

In this section, we provide the background of the LLM
inference and discuss the performance issues in existing works
to motivate our work.

A. LLM Inference and Applications

LLM Inference. Large language model inference oper-
ates through the autoregressive Transformer architecture [27],
where input prompts are first tokenized and processed sequen-
tially. During each iteration, the model estimates a probability
distribution over the vocabulary, selects the next token via
greedy decoding or probabilistic sampling, and appends it
to the growing sequence. This cyclic process continues until
either an end-of-sequence marker is generated or a predefined
maximum sequence length is reached, as documented in
foundational studies [28], [29], [30].

LLM Applications. Large language model applications
have demonstrated explosive growth, exemplified by Chat-
GPT’s achievement of surpassing 100 million monthly active
users within two months of its launch [3]. Enterprise deploy-
ments reveal concrete economic impacts, including up to 30%
reductions in operational costs, 25%—-40% improvements in
process efficiency, and annual revenue enhancements reaching
tens of millions in specific sectors [31]. Through prompt
engineering that reframes diverse tasks (e.g., translation, sum-
marization) as generative problems, LLMs are fundamentally
transforming productivity paradigms and cost structures across
multiple industries [32].

B. Inference Serving System

Transformer-based large language model inference involves
two core steps: the prefill step and the decoding step [4]. In
the prefill phase, the model processes the entire input prompt
concurrently to compute intermediate representations and gen-
erate the first token. While in the decoding phase, the model
sequentially produces subsequent tokens one-by-one [5]. Most
existing systems colocate these two phases on the same GPU
cluster using continuous batching [8]. However, this colocation
introduces prefill-decoding interference because the compute-
intensive prefill phase monopolizes GPU compute cycles and
memory bandwidth, causing decoding tasks to wait for avail-
able resources and experience increased queuing delays. It
negatively affect latency metrics, for example, increasing the
time-to-first-token (TTFT) and time-per-output-token (TPOT)
[4].

To address these issues, recent works [4], [7] have proposed
architectures that decouple the prefill and decoding phases
by deploying them on separate hardware resources. In these
architectures, dedicated prefill instances efficiently process
the input prompts, while separate decoding instances handle



120
K100 - 2 56 5
° 6.6 6.2
g’ 80 r
c
8 60 - 65.9 B
& 40
@ 20 L 52.2 2
8 219 13

O L L L

L40 FP16/FP16  L40INT8/FP16 A100 FP16/FP16 A100 INT8/FP16
[JFP16 GEMM [1INT8 GEMM M FP16 AllReduce M Norm&Act M Others
Fig. 1: Prefill cost breakdown of LLaMA-3-70B operations
as measured by [33]. Tested on 4x1.40/A100 GPUs (TP=4)
with a batch size of 8, each with 1024 input and 64
output tokens. NCCL’s Ring All-Reduce is applied. The
notion of x-ticks (e.g. L40 FP16/FP16) denotes GPU type,
model weight precision, and communication precision,
respectively

aggregator

(a) INA utilizes homogeneous
networks (Ethernet).

(b) INA utilizes heterogeneous
networks (NVLink and Ethernet).
Fig. 2: Comparison of INA over homogeneous and hetero-
geneous networks. S denotes the switch, GN denotes the
GPU and the associated network NICs.

token-by-token generation. This separation allows for indepen-
dent resource allocation and tailored parallelism strategies for
each phase [4], [7].

Performance issues. A critical challenge in existing archi-
tectures, such as DistServe [4], is coping with the enormous
parameter sizes of current LLMs. To store a large number
of model parameters and support a large number of users
to access cached data, many studies [21], [34] recommend
deploying inference instances across multiple GPU servers.
In such scenarios, communication overhead becomes a major
contributor to inference latency. As shown in Fig. 1, when
enabling parallelism across GPU servers (i.e., synchronization
data are transmitted over 100Gbps Ethernet), the communi-
cation latency of all-reduce accounts for over 65% of the
overall latency on L40 GPU [33], and the latency exceed
75% on A100 due its larger computation FLOPS. However,
existing works [4], [7] only try their best to deploy the LLM
inference instance on an indivisual GPU server as much as
possible, which may sacrify the scalability. Communication
issues across GPU servers are not properly resolved, leading
to reduced throughput and degraded user experience.

C. In-Network Aggregation

To address the high communication overhead in large-scale
distributed systems, researchers and industry practitioners have
proposed various in-network aggregation (INA) schemes [12],
[13], [14], [15], [16], [17], [18], [19], [20]. INA enables
switches to combine packets (e.g., gradients or intermediate
activation values) across workers (e.g., GPU), thereby reducing

the data volume sent over the network and lowering both
latency and bandwidth usage [12], [13].

Performance issues. Existing INA schemes [12], [13] still
suffer from high latency because they assume that aggregated
data is transmitted over homogeneous networks (e.g., Ether-
net). Due to connectivity limitations, packets often traverse
detour paths, resulting in extra delays. Fig. 2 illustrates the
differences between homogeneous and heterogeneous net-
works for data aggregation. These GPU cards are coupled
with RDMA NICs to enable the GPU Direct feature, which
improves transmission efficiency and has been widely adopted
in both industry and academia [35], [36], [37], [38]. In our
example, each GPU server has two GPUs connected via high-
throughput NVLink (e.g., 600GBs), while GPUs across servers
use 100Gbps Ethernet links. We consider a scenario that three
GPUs deploy the same model instance to perform all-reduce
operations using INA. In a homogeneous network (Fig. 2(a)),
the aggregation switch is the core switch S1. For IMB of
data, two hops of Ethernet links are required, resulting in an
aggregation delay of approximately 160us. In a heterogeneous
network (Fig. 2(b)), GPUs use NVLink to forward data to
an access switch S2 before traversing an Ethernet link. This
path significantly reduces the delay to about 90us, nearly 43%
lower than the homogeneous solution. Moreover, offloading
Ethernet traffic to NVLink further reduces congestion and
improves throughput.

III. DESIGN
A. Key Idea and Overview

The goal of HeroServe is to maximize scalability while
minimizing the average token generation latency, subject to
meeting the Service-Level Agreement (SLA). Scalability is
defined as the number of requests served per second, meaning
that a higher scalability implies the system can handle more
concurrent requests. We target the prefill and decode disaggre-
gated LLM inference architecture, which is widely adopted in
many leading LLM inference systems [2], [4], [7], to fully
leverage GPU resources and improve inference efficiency.

The key idea and insight. Unlike existing works that either
deploy inference instances within GPU servers or reply solely
on homogeneous networks to accelerate cross-server commu-
nications, we take a holistic view by optimizing the inference
efficiency across both intra- and inter-GPU deployments in
heterogeneous networks (e.g., Ethernet and NVLink). We
jointly model computation and communication and propose a
load-aware online scheduler that dynamically adjusts commu-
nication strategies (e.g., INA and ring) and transmission paths.
This design effectively exploits heterogeneous links to enhance
inference scalability and reduce token generation latency.

As shown in Fig. 3, the primary function of the scalability-
oriented offline planner is to optimize computation allocation
and communication strategies. It takes system status (e.g.,
network topology and etc) and user requirements (e.g., latency
SLA) as inputs. Its goal is to maximize scalability while
ensuring that latency remains within SLA constraints (see Sec-
tion III-C). This optimization problem is inherently complex
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because it involves dynamic constraints such as changes in
available GPU memory as well as high-dimensional decision
spaces. For instance, the GPU deployment subproblem alone
has a search space on the order of O(N!/(Piens!)fir¢), not to
mention additional complexities such as shortest path selec-
tion. Since solving this problem in constant time is infeasible,
we design a heuristic algorithm to address this challenge.

The load-aware online scheduler complements the planner
by periodically adjusting the transmission policy. It dynami-
cally switches communication schemes (e.g., INA or ring ag-
gregation) and paths to balance traffic and mitigate congestion
in heterogeneous networks. The policy takes the amount of
synchronization data as input and selects the optimal commu-
nication scheme and path based on the estimated bandwidth
overhead along each potential route. The decision is guided
by a virtual bandwidth utilization ratio maintained for each
path in a policy cost table (as detailed in Section III-D). A
control center is provided to synchronize the virtual bandwidth
utilization ratio across all GPUs.

B. System Model and Basic Notations

Fig. 4 presents the architecture of LLM serving systems.
Where the prefill and decode components are deployed sep-
arately, as adopted in recent systems [2], [7], [4]. As shown
in Fig. 4, each cluster has its own GPU cards, denoted by
vy /V;' , and access switches, denoted by V//V¢. Note that these
GPU cards are coupled with RDMA NICs to enable the GPU
Direct feature, which improves transmission efficiency and has
been widely adopted in both industry and academia [35], [36],
[37], [38]. These clusters communicate through a core switch,

TABLE I: Input parameters of the offline planer.

Input Parameter Name Symbol

The number of model layers L

The number of hidden layer h

The number of heads A

FFN intermediate size m

Block size in the attention kernel b

Model parameter size (B) R

Input batch size 0

Input length of each request (B) lo,....lp—1

Input token size in the batch (B) Kin = lQ:_OI l;
Output length of each request (B) 0p,...,00_1
Output tokens size (B) Kout = ):l.Q;O1 0O;
Squared sum of the input lengths Kinp = IQ:B] ll.2
The rest of GPU memory capacity (GB) My =[M,,...,M]
Network topology G=(V,E)

Node set includes switch set V, = {V/,V7}

and GPU set V, = {V{,V¢} Y Vi=1{Vs Ve

Edge set E

Edge bandwidth capacity (bps) C=[C(er),...,Cl(en)]
The rest of edge bandwidth (bps) B=B(ey),...,B(en)]
Request arrival rate (r/s) A

In-network aggregation entry size (B) Mipn,

SLA latency threshold (s) 7;‘1’:\8, Ts‘fjc

TABLE II: Output parameters of the offline planer.

Output Parameter Name Symbol

Parallel parameters include tensor parallel P, P, P

and pipeline parallel P;)ipe’ Pgipe all

The set of prefill GPU IDs K}

The set of decode GPU IDs Kd

The set of shortest connection path between k and a Plra)

The set of in-network aggregation switch includes Vi = (V1 ﬁa’viza}

the prefill switch Viﬁa, the decode switch Vlﬁd

The set of in-network aggregation selector includes

N
the prefill selector o?, the decode selector a? a={a’ o}

The set of ring communication selector includes
the prefill selector 37, the decode selector B¢

B={B.B'}

The communication related parameters

M
@, Bv Vinas P(k,a) ¢

enabling independent optimization, maintenance and evolution
of prefill and decode. This architectural separation allows
system designers to tailor hardware to the specific needs of
each cluster: the prefill cluster is compute-bound and benefits
from severs with high computational throughput, whereas the
decode cluster is memory-bound due to the large KV cache,
favoring servers with ample memory capacity [7], [4].

The overall LLM serving system can be modeled as an
undirected acyclic graph G as shown in Fig. 4. The graph
contains a series of GPU nodes VJ /Véfi and switch nodes
\%4 /Vsd. The direct links between nodes are represented as
edges E. Some edges correspond to Ethernet links, while
others to NVLink connections. Each edge has a maximum
bandwidth C and an available bandwidth B.

After running the offline planer (as detailed in Section
II-C), the deployment locations of GPUs in the prefill and
decode clusters, denoted by Kg and Kg, are obtained. For
each parallel GPU group, we compute the current optimal
communication scheme (i.e., selecting between INA ¢ and
ring communication f3) and the corresponding path P(k,a) (as
listed in Table II).



At the user side, the size of each request is modeled as
l;. Given a future batch size Q, the total input token count,
Kin, can be derived (as stated in Table I). Similarly, the total
output token count, K, is estimated. To update these values
over time, we utilize state information collected by the online
scheduler module and apply a moving average method to
dynamically update Kj, and K,,;.

C. Scalability-oriented Offline Planer

In this subsection, we provide a detailed description of how
to model the aforementioned LLM inference tasks based on the
system model introduced earlier. In the following expressions,
the absence of superscripts p (prefill) and d (decode) indicates
that the parameters have identical derivations for both the
prefill and decode clusters.

1) Application Level Metrics: The optimization objective is
to maximize the scalability, defined as the number of served
requests per second, denoted by H. At the same time, the token
generation latency TTFT (Time-To-First-Token) 7}, and the
token production latency TPOT (Time-Per-Output-Token) 7y,
must remain below their respective SLA thresholds. Formally,
the objective is expressed as:

1

max H=—
Treq 1
subject to Ty < T1'° (1)
d
Tdec S Tslﬁc

Here, T, is the latency to serve a single arriving inference
request. It can be decomposed as Trey = Tyuecue + Tyerve, Where
Tyueue Tepresents the queuing delay for arriving requests, and
Tierve 1s the inference latency to generate sufficient tokens for
each user’s request.

We adopt a continuous batching approach. The batch size
adapts to the volume of arriving requests. The adaptation
scheme follows the existing work [8]. We assume that request
arrivals follow a Poisson process. This assumption is justified
by the high predictability of the execution times of LLM
inference tasks, as detailed in [39], [40], [4]. The queuing
delay is estimated using the Pollaczek—Khinchine equation
[40]. When there is insufficient memory to serve all requests,
an additional queuing delay is incurred. This delay is approx-
imated by: Tjyeue = jgszir’v)‘) Where A is the request arrival rate
and p = AT is the utilization ratio. The inference latency
Tserve comprises three components: the communication latency
T,, the computation latency 7., and the KV cache transfer
latency Ty from the prefill cluster to the decode cluster. That
is,

Tserve =T +Te + Tf @)
The token generation latency 7, is given by
Tpre =TI+ TP 3)

where T;/" and T/" are the communication and computation
delays among the parallel GPUs allocated for the prefill
cluster, respectively.

The token production latency Ty is defined as the delay
between two consecutive output tokens. It includes the com-
munication latency 7,9 and computation latency 7,9 among
the parallel GPUs allocated for the decode procedure, along
with the KV cache transfer latency 7. Therefore,

Tdec _ Tndec + Tcdec + Tf (4)

Furthermore, the overall communication latency is defined as
T, = T,/ 4+ T4 and and the overall computation latency as
T, = T/™ 4 T,

2) Metrics Modeling: For the communication latency 7,
it is determined by the chosen communication optimization
strategy. It is modeled as:

S
Tn = Tpp+ZTm(S) (5)

where T),, is the synchronization latency among the paral-
lelized pipeline clusters. This latency depends on the num-
ber of parallelized pipelines Py, and is given by 7T,, =
Zfi"fFlTpp(i). Here, 7,,(i) is the synchronization latency
between the i-th and (i+ 1)-th pipeline clusters. In particular,

Tpp(i) =min max Ti, (6)

kEKg(i+1)

where K,(i+ 1) denotes the set of GPUs in the (i+ 1)-th
pipeline group and Tj , represents the shortest latency from
GPU £k to GPU a. In the prefill cluster, the latency is expressed
as Tkp = Z;Vi \ Kinh/B(en). Where Nj, is the number of hops
from the GPU k to the GPU a. In the decode cluster, the
expression is Tk”fa = ):ilvil h/B(ey,).

The synchronization communication latency for the s-th
step, Tn(s), is computed as:

Tm(s) = (X(i) 'Tina(s)'i‘ﬁ(i)'Tring@) (7

where the two binary variables o(i) and B(i) select the
synchronization method for the i-th GPU group (i.e., (i) €
{0,1}, B(i) € {0,1}, and (i) + B (i) = 1). Here, Tjn(s) and
T,,-,,g(s)are the latencies for the in-network aggregation (INA)
and ring-based approaches, respectively.

The INA latency is decomposed into three phases:

Tina(s) = Tcol(s) + Tagg (S) + Tuis (S) ()

As introduced in Section II, the in-network aggregation pro-
cedure is detailed as three steps: data collection T,,(s),
parameter aggregation T,g,(s), and data distribution Ty;s(s).

Pens
Teoi(s) = I}flj{i T (5), VX jx = 1 ©)
col DIZ‘UI (S)
Tas) = L (E5) (10)
enEP(kAa) (en)

Tk“;l (s) denotes the data collection latency from the k-th
GPU to the a-th aggregation switch for the s-th calculation
step. X; j « specifies the deployment of the j-th tensor in the i-th
layer of GPU k. Where DX (s) is the number of bits that must

col



be transferred in the s-th step. For a typical parallel inference,
each layer involves two synchronization steps. The data vol-
ume can be represented as le = [Deoi(@),Deoi(f)] according
to [4], [41]. where D, (a) and D.,;(f) are the communication
loads for the attention output and FFN layers, respectively,
with D¢i(a) = Deoi(f) = Kinh. Additional parallelizable steps
may be incorporated similarly.

We treat T,4,(s) as a constant in the programmable switch
(approximately 1 us as reported in [42], [43]). The distribution

latency Ty;s(s) and the corresponding data volume DX, (s) are
configured similarly to T.,(s) and DX (s).

T, 2(Prens — 1 Diy) \Z 11

rmg(s) = ( tens )mine,,eP( B(en)v €n (11)

ka)
The latency for the ring-based communication scheme is given
above. In this expression, D];g(s) denotes the expected data
volume for the s-th ring all-reduce step. It can be expressed
as Df, = [Dyg(a) +Dyg(f)] With Dyg(a) = Dyg(f) = Kinh/Prens.-
The bandwidth utilization constraint for the ring scheme
is analogous to that in the previous equation, with DX (s)
replaced by D’ﬁg(s).

For the computation latency 7, it consists of two compo-
nents: the prefill 7/ and the decode 7,9 and can be inferred
according to the existing works [4], [44]:

1 2
TP = - (4h° Kin+ 2hmKin) + - b 3hKim +C3 (12)
C4 Cs
T = —————(4h* +2hm) + ————3hK;, +C6  (13)
¢ I)Z“énSP;JZipe I);énSPI"ZiPe :

Where C1,C2,C4, and C5 denote the linear fitting parameters
for computational latency. C3 is used to quantify other over-
heads like Python Runtime, system noise and so on [4], while
C6 denotes the overhead of filling the parallelizable pipeline
in the decoding procedure [44]. Similar to the existing works,
we use a profiling and interpolation approach to figure out the
values of C1 to C6.

For the KV cache transferring latency 7y, it can be
inferred as follows:

Ty = max T/
kek,

(14)

where Tkp is the maximum KV cache transmission latency
for each prefill GPU k € K,,. During KV cache computation,
all prefill GPUs simultaneously transmit their KV caches to
the associated decode GPUs (called the prefill/decode GPU
pairs that are allocated with the same i-th model layer and
j-th tensor segment). Due to different routing paths, each
prefill/decode GPU pair incurs a different delay. Thus, the
overall latency is determined by the longest delay.

For each prefill GPU £, the transmission latency is modeled

as
=Y Z T;j(k.2)

2€Ky (i,j)€Ry ;

15)

where Tj j(k,z) denotes the latency for transferring the KV
cache corresponding to the i-th layer and j-th tensor segment

Algorithm 1: Scalability-oriented Offline Planer.

Input : Parameters shown in Table 1.
Output: Parameters shown in Table II.
1 max_H=0;
2 candi = gen_tp_pp_candi(V, R,
3 foreach P, € candi do

My, R_frac, max_candi);

4 thread process_| preﬁll cluster

5 m_req = R/(PL,,;- plpe ‘R_frac);

6 VY del GPU in V' with memory < m_req;

7 if len(Vp) < Pl Plfp then

8 L Continue to the next configuration;

9 CM, Ky, T =est_network_latency (P, Vg’, Kin);

10 | 7= est_compute_latencyp(Py;, Kin);

11 thread process_ decode cluster

12 m_req = R/(PZ,, - ,”pe “R_frac);

13 Vd’ <+ del GPU in Vd with memory < m_req;

14 if len(Vd’) < Pl Pd then

15 L Contmue to the next configuration;

16 CM, Ky, Tnde‘ =est_network_latency(P,;, é, Kout);
17 B Tcd“: est_compute_latencyd(Py;, Kin, Kinz,s Kour);
18 szest_kvtrans_latency(K,-n, A, Pyp);

19 Update Tpre, Tyee» H based on Eq (1), (4), (5);

20 if Ty <TV and Tyee < 7;?;26 and H > max_H then
21 L Update output parameters;

from prefill GPU k to decode GPU z. This latency is the sum
of the delays across all hops on the path from & to z: T; j(k,z) =
sz(li’z) [D;.j/B(ep)]. where H(k,z) is the total number of hops,
D; j is the amount of data to be transferred for the i-th layer
and j-th tensor segment. The data volume D;; is given by
Di,j = 2Kinh/A (Ptens/A—l-

3) Solving the Problem: We observe that after modeling
the above LLM inference task, the parameter space in Table
IT is too large to solve in constant time. To address this
issue, we simplify the problem using the following heuristic
strategies while minimizing their impact on the solution: 1) For
communication latency, we first offline compute the pairwise
shortest path matrix P ,) and minimum latency matrix Dy;
for all nodes. Next, we group GPUs for tensor parallelism
based on interconnection latency using a clustering method.
Finally, random perturbations are utilized to further improve
the efficiency. 2) For computational latency, we compute the
minimum required GPUs for P,; combinations based on Q
and My, associated with an empirical upper bound. 3) For KV
cache transfer latency, we use the offline computed minimum
latency matrix D(i,j) and solve for the latency according to
Equation 14.

Algorithm 1 presents the procedure of scalability-oriented
offline planer. 1) Determine the minimum GPUs. We calcu-
late the minimum number of GPUs needed for inference based
on the model parameter memory R and the reserved memory
ratio R_frac at each server: R/YX | M,(k)R_frac. Using
this minimal count, we generate combinations of Pp;,. and
Piens, returning up to max_candi candidate configurations. (Our
experiments show that setting max_candi = twenty usually



Algorithm 2: Estimate network latency.

Input : Pens, Fpp, Vg’, Kinjout-
Output: CM, K,, T,,.
1 case bandwidth_utilization_is_update
2 D j = gen_latency_matrix(Vg,, alg=dijkstra);
Pla) = store_shortest_path(Vg’, alg=dijkstra);

w

K, = group _gpu(Véi, Fpp, Dy j), alg=k-means-constrained);

Initialize 7,[i] for each group to zero;

foreach group € K, do

Find Vi with the smallest delay to the group while
meeting memory constraints.;

8 group.append(Vs); Ving.append(Vs);

N S B

9 foreach group € K, do
10 T, [group_id] = getlatency(group, D(; j), Kin/ou):
11 Store path for each GPU in group based on P 4);

12 foreach group € K, do

13 improvement <— true;

14 while improvement do

15 improvement <— false;

16 g_tmp < random.select_group(cluster);

17 group’, g_tmp’ <— Randomly swap group and g_tmp;
18 newLatency = getlatency(group’, D(; jy, Ky /our);

19 if newLatency < T,[group_id] then

20 T,[group_id] = newLatency;

21 L Update K, with group’ and g_tmp’;

22 improvement <— true;

23 Estimate (Ppp-1) inter group latency T;[];
24 T, = sum(T,) + sum(T;);
25 procedure getlatency(group, Dy; jy, Kiy/ou)

26 Ting = compute_ina_latency(group, D(; j), Ky /our)s
27 Tring = compute_ring_latency(group, D; jy, Ky /ou);
28 if Ting > Tying then

29 L B.append(group_id); return Tring:

30 else

31 L a.append(group_id); return 7,43

yields near-optimal solutions.) 2) Estimate overheads. Two
threads run simultaneously to compute the computation and
communication overheads. Both processes are similar and
differ only in the input parameters. We invoke the network
overhead estimation function (Algorithm 2) and compute the
overheads using Equations 12 and 13. Given the sending and
receiving nodes, Dijkstra’s algorithm is applied to compute
the KV cache transfer latency between the prefill and decode
clusters. 3) Select the optimal configuration. We return
the configuration that meets the SLA latency requirements
while maximizing throughput. Experimental results indicate
that our algorithm typically finds a solution within 10 minutes,
a reduction of 28.57% compared to DistServe [4].

Algorithm 2 estimates the network latency as follows: 1):
GPU grouping. We partition all GPUs into P, groups, each
containing F,,.,; GPUs using a k-means-constrained approach
[45]. 2) Communication mode selection. We compute the
communication latency for both the INA and ring schemes
using Equation 8 and Equation 11 and choose the mode with
the lower latency. 3) Perturbation scheme. To avoid local

optima, GPUs are randomly swapped between groups, and
the communication latency is recalculated. If a swap reduces
latency, the new assignment is kept. Our experiments show
that the algorithm typically converges within five iterations.

D. Load-aware Online Scheduler

To improve inference throughput and minimize token gen-
eration latency, it is crucial to evenly distribute request traffic
across heterogeneous networks (e.g., Ethernet and NVLink) to
maximize bandwidth utilization and mitigate congestion. To
achieve this, we propose a load-aware online scheduler that
takes the number of tokens (including input and generated
tokens) as input and dynamically adjusts the communication
scheme (INA and ring) and transmission path to distribute
traffic efficiently.

A policy c is defined as a set of routing configurations,
e.g., the transmission scheme (INA or ring), the next hop, the
transmission path and etc. Given the observed transmission
data D, we define the policy cost function J(c¢,D) as the max-
imum bandwidth utilization ratio among all transmission links
involved with c¢. For example, a policy using the INA scheme
may have GPU1 and GPU2 transmit data to an aggregation
switch via two separate paths, with the cost being the higher
utilization ratio of these paths. Then the optimization goal can
be formulated as follows:

¢* =argminJ(c,D)
ceC

(16)

The optimal policy ¢* is defined as the one that minimizes
the policy cost that is expressed as J(c,D) = b.+ 6. Here,
b, represents the previous cost of the policy ¢. The term &,
calculated as D/(T,b.), represents the estimated additional
bandwidth utilization when the transmission task is allocated
to policy ¢, and T, is the estimation window.

After the optimal policy ¢* is selected, the increased band-
width from data transmission updates all related policy as
shown below:

D .
) , if c=c",
b, = b+ { Tybe (17)
m'f(c*’c), 1fC7£C*.

The load penalty function f+ . quantifies the impact of
selecting ¢* on unselected policies c¢. Since selected and
unselected policies may share intersecting links, the added
load on ¢* increases the overhead on its edges, which in turn
adds traffic on the shared links of unselected policies. As f( )
depends on the shared links among multiple paths, it is updated
periodically based on the following formula:

f(c*,c) = (1 - Y) 'f(C*»C) +7 W(C*"")

Here, Wi o) = Yercerne B(€¥)/ Lece B(e) represents the shar-
ing ratio between policies ¢* and ¢, considering the network
topology and the bandwidth utilization of intersecting links
B(e*), which are monitored by GPUs and programmable
switches. The parameter Y is a smoothing factor that controls
the update speed of the penalty function.

(18)



Policy selection table in GN1

Policy Path Dst Np Cost
cl1 el,e5 S1 | S2 | B[e5]|!
i 2 | ele3 [ G3]s2|[Ble3l]i

Policy =~ Path Dst Np Cost il Policy Path Dst Np Cost
cl e2,e6 S1 | S3 | B[e5] cl e3,e5 S1 | S2 |B[e5]| !
2 [ n1 |G1[G1]Ble3]]ii| 2 [n2e4e2| G3 ] S2 [Ble3]]!

Fig. 5: The example of policy selection table stored in
GPUs. Np denotes the next hop to the destination. cl
denotes the policy of using INA while c2 denotes the policy
of using ring.

Figure 5 illustrates a policy cost table stored on GPUs. The
table details how GPUs select transmission paths and schemes
and how they synchronize these selections. When the NCCL
ncclAllreduce function is called, each GPU (e.g., GN1,
GN2, and GN3) selects the lowest-cost policy from the table.
This policy prioritizes its corresponding route and ensures the
underlying layer executes the appropriate forwarding entry. In
this example, suppose Bles] is lower than Bles], and policy c1
is selected. Next, all GPUs report their selection results to the
centralized controller HeroServe. The controller instructs all
GPUs (e.g., GN1, GN2, GN3, and GN4) to update their policy
cost tables synchronously according to Equation 17. These
actions are triggered periodically when the ncclAllreduce
function is executed.

IV. IMPLEMENTATION

We prototype HeroServe with a centralized scheduler and
agents on both GPU servers and switches to coordinate
model deployment and enforce the online transmission strategy
adaptation. The implementation comprises over 5.3K lines of
Python code for the controller, over 400 lines of P4 code for
the programmable switch data plane, and over 2K lines of
C++ code on GPU servers. The GPU-side implementation is
built on top of SwiftTransformer [46] which supports high
performance model and pipeline parallelism.

Agent on Programmable Switches. /) Data Plane. In our
design, the data plane implements a synchronous in-network
aggregation (INA) mechanism. The aggregation memory space
is organized as a pool of fixed-size aggregator slots across
multiple switch pipelines. aggregation_table is an exact—-match
table with keys based on the port and an aggregator ID
(or index) is used to map incoming INA update packets
to corresponding aggregator slots. The value field stores a
partially aggregated vector (whose elements are represented
as fixed—point integers) and a counter indicating the number
of contributions received.

2) Control Plane. The central scheduler uniformly allocates
and recycles aggregator slots. The switch control plane pro-
vides APIs that allow for high—speed updates of the aggre-
gation table entries via vendor—provided low—latency runtime
libraries (e.g., using the switch’s native runtime API) [43]. It
periodically polls hardware counters from the data plane to

Fig. 6: Testbed. GPU servers and switches are connected
with 2tracks.

obtain link utilization metrics. These statistics are then used
to update the cost parameters in the online scheduling process.

Agent on GPU Servers. On GPU servers, an agent operates
a load-aware online scheduler that dynamically updates route
costs using lightweight vectorized operations (e.g., NumPy)
based on the current batch size and token generation require-
ments. It then selects the optimal transmission mode (INA
or ring-based) and embeds this decision in the packet headers.
Additionally, the agent retrieves the bandwidth utilization ratio
of NVLink via the DCGM (Data Center GPU Manager) tool
[47].

Central Scheduler. The central scheduler is implemented
as a Python application that periodically aggregates static
topology data (e.g., GPU server configurations and switch
capacities) and dynamic network performance metrics from
hardware counters and NIC monitors. After solving the op-
timization problem, the scheduler disseminates the computed
policies (including aggregator assignments, routing cost base-
lines, and transport mode preferences) via high—speed gRPC to
agents on programmable switches and GPU servers, enabling
a centralized control-plane update loop that rapidly adapts to
load variations and ensures sustained high throughput and low
latency across the distributed inference serving system.

V. EVALUATION

We evaluate HeroServe through a combination of small-
scale testbed experiments and large scale simulations, and
comparing it against three of the most relevant existing solu-
tions, i.e., DistServe [4], DistServe-ATP [12], and DistServe-
SwitchML (DS-SwitchML) [13]. Among them, DS-ATP and
DS-SwitchML represent the integration of ATP asynchronous
INA and SwitchML synchronous INA solutions into Dist-
Serve, respectively, to improve the efficiency of network
transmission. All algorithms are evaluated based on the pre-
fill/decode disaggregated architecture, and all enable con-
tinuous batch processing technology to improve inference
throughput.

Testbed Deployment. As illustrated in Fig. 6, the testbed
comprises six servers and two programmable switches
equipped with Tofino 1 ASIC [42]. One server acts as the PS,
while another server acts as the transmission/reception server
that replays the traffic of ShareGPT [24] and LongBench
[25]. The remaining four GPU servers (e.g., two A100 servers
and two V100 servers) serve as workers to hosting inference
instances. Each GPU server contains four GPU cards with
NVLinks enabled. A100 has 40GB memory while V100 has
32GB memory. Each server is equipped with two Mellanox



ConnectX-6 100G dual-port NICs that have four 100Gbps
ports in total, which indicates that each GPU card can have
different Ethernet links to the switch. The GPU network card
of each server is cross-connected with the uplink switch to
achieve high-availability deployment (as shown in Fig. 6). Fig.
6 shows the connection scheme of 2tracks, where x in xtracks
represents the number of access switches.

Simulation Settings. We perform simulations on a physical
server equipped with an Intel Core i9-9900K processor and an
NVIDIA GeForce RTX 2080 Ti GPU. We utilize a high fielity
deep learning simulator APEX [48] to perform the large scale
simulation. It supports most common parallelization strategies
and provides a enhance memory system modeling to support
accurate modeling of in-network collective communication
and disaggregated memory systems. In our simulation, we
deployed 1200 A100 GPU servers (each equipped with 8
GPUs) to evaluate two network configurations. The first,
the 2tracks configuration, utilizes GPU units of 6 servers
connected by 2 access switches, amounting to 400 access
switches and 27 core switches in total. The second, the 8tracks
configuration, employs GPU units of 16 servers connected
via 8 access switches, with an overall deployment of 600
access switches and 280 core switches, simulating a scenario
with more evenly distributed traffic across a larger number of
switches.

Model and workloads setup. Similar to prior work on LLM
serving [4], we choose the OPT [26] model series, which is
a representative LLM family widely used in academia and
industry. We use FP16 precision in all experiments. We use
the ShareGPT dataset [24] for the chatbot application (with the
SLA of 2.5s TTFT and 0.15s TPOT) and the LongBench [25]
dataset for the summarization application (with the SLA of
15s TTFT and 0.15s TPOT) to test the OPT-66B model on the
testbed. For large scale simulation, we test the above chatbot
(with the SLA of 4s TTFT and 0.2s TPOT) and summarization
(with the SLA of 25s TTFT and 0.2s TPOT) on OPT-175B
model under different switch tracks settings (i.e., 2tracks and
8tracks). Since all the datasets do not include timestamps, we
generate request arrival times using a Poisson distribution with
different request rates.

Results reveal that:

o HeroServe achieves high scalability: it is 1.53x, 1.42x
and 1.33x better than DistServe, DS-ATP, and DS-
SwitchML respectively.

o HeroServe achieves lowest latency, it significantly re-
duces per-token latency (TPOT) by about 18.6%-49.2%
compared to its counterparts.

o HeroServe can consistently achieve the highest in-
network aggregation throughput varying message size
from 4MB to 64MB.

A. Testbed Experiments

Scalability. The SLA attainment represents the fraction of
requests that meet the latency SLA. In our evaluation, we
focus on the maximum per-GPU rate that the system can
handle while satisfying the latency requirements for over 90%
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Fig. 7: Testbed. Scalability and latency over OPT-66B.

of requests. As shown in Fig. 7(a) and Fig. 7(c), HeroServe
achieves superior scalability than existing solutions in both
chatbot and summarization scenarios. Specifically, in the chat-
bot scenario, HeroServe is 1.53 %, 1.42x and 1.33 x better than
DistServe, DS-ATP, and DS-SwitchML, respectively; while in
the summarization scenario, it is 1.68x, 1.58x and 1.35x
better than these baselines. This improvement is primarily at-
tributed to its optimal model partitioning and dynamic alloca-
tion strategy that leverages both high-bandwidth NVLink and
Ethernet for inter-server communication, effectively reducing
bottlenecks under high request loads.

Latency. As shown in Fig. 7(b) and Fig. 7(d),
HeroServe reduces per-token latency (TPOT) by approxi-
mately 18.6%-49.2% compared to its counterparts. This im-
provement is largely due to its ability to minimize communica-
tion delays through integrated, optimized cross-GPU routing
over heterogeneous networks, effectively reducing inference
synchronization time. In the summarization scenario, although
alooser TTFT SLA is allowed due to longer inputs, HeroServe
still reduces initial delay (TTFT) by roughly 15.2%-45.2% and
the per-token delay (TPOT) by around 11.2%-27.3%, ensuring
rapid token generation even when processing lengthy texts.

B. Simulation Experiments

Scalability and Latency. As shown in Fig. 8, HeroServe
boosts scalability by approximately 1.09x-1.83x in the
8tracks scenario. In larger model deployments, where more
GPUs are used and inter-GPU communication demands, the
benefits of HeroServe are even more pronounced than in the
OPT-66B scenario. Additionally, HeroServe reduces the per-
token delay by roughly 28.4%-42.1%, a crucial improvement
given the cumulative delays in large-scale models. In the
2tracks scenario, scalability improvements reach 1.12x-1.94x
compared to its counterparts, as the limited Ethernet bandwidth
causes DS-ATP and DS-SwitchML—relying solely on Ether-
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Fig. 9: Simulation. In-network Aggregation.

net for synchronization—to suffer from increased congestion
and degraded performance.

In-network Aggregation Throughput. As shown in Fig.
9, HeroServe achieves the highest in-network aggregation
throughput compared to existing approaches. Specifically,
in the 2tracks scenario, HeroServe improves throughput by
71.7%, 26%, and 20.1% over DistServe, DS-ATP, and DS-
SwitchML, respectively. This performance is mainly due to
its heterogeneous communication scheduling strategy, which
leverages additional network bandwidth to transfer data more
efficiently.

Memory Efficiency of Storing KV Cache. As depicted in
Fig. 10, HeroServe consistently maintains the lowest memory
utilization in both 2tracks and 8tracks scenarios. Its high
transmission efficiency results in more frequent KV cache
refreshes, reducing memory usage. Additionally, an online
algorithm adaptively adjusts the communication mode and
path based on the request load, evenly distributing traffic
across the heterogeneous network, reducing congestion, and
expediting data forwarding. This approach keeps the number
of concurrently processed user requests in memory at a lower
level.
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Fig. 10: Simulation. Memory efficiency, summarization,
OPT-175B, 0.07 req/s.

VI. RELATED WORK

Inference Serving Systems. There has been plenty of work
on inference serving recently [2], [5], [7], [4], [49], [50], [51],
[8], [6] Among them, DistServe [4] and SplitWise [7] improve
the performance of large language models (LLMs) serving by
disaggregating the prefill and decoding computation, eliminat-
ing prefill-decoding interferences. AlpaServe [49] focuses on
employing model parallelism to statistically multiplex the GPU
execution thus improving the resource utilization. However,
existing systems lack optimization for tensor-parallel com-
munication, leading to significant delays. Deploying LLMs
on extensive GPU clusters exacerbates latency and through-
put issues. In contrast, HeroServe leverages heterogeneous
communication links and unified computation-communication
modeling to markedly enhance distributed deployment perfor-
mance, reduce token generation delays. FastServe [6] uses
preemptive scheduling to minimize latency with a skip-join
Multi-Level Feedback Queue scheduler. FlashCommunication
[33] proposes a low-bit compression technique designed to al-
leviate the tensor parallelism communication bottleneck during
inference. Orca [8] proposes a iteration-level scheduling that
schedules execution at the granularity of iteration (instead of
request) where the scheduler invokes the execution engine to
run only a single iteration of the model on the batch. They are
all orthogonal to my work.

In-network Aggregations. Recent works on In-network
Aggregations (INA) can be classified into three cate-
gories. First, switch offloading techniques (e.g., ATP[12],
SwitchML[13], PA-ATP[14], ZEBRA[52], DSA[53], NetRe-
duce [20], ASK [18]) accelerate training by offloading gradient
aggregation to programmable switch dataplanes, incorporating
approaches such as progress-aware transmission and priority-
based preemption. Second, network-aware scheduling and
resource management approaches (e.g., NetPack [16], INAlloc
[19]) optimize job placement by leveraging dynamic estima-
tion and precise valuation of compute, bandwidth, and switch
memory resources. Third, INA routing and system frameworks
(e.g., In-Go [17], AggTree [54], FreeINA [55], NetRPC [56],
ClickINC [15]) streamline in-network communication through
refined routing algorithms, batch size adjustments, and unified
programming abstractions for INC-enabled applications. How-
ever, all these designs target Ethernet-based INA transmissions
without considering the challenges of heterogeneous networks
(i.e., the NVLink and Ethernet), leaving room for HeroServe
to significantly improve the LLM inference scalability and



reducing the token generation latency.

VII. CONCLUSION AND FUTURE WORKS

This paper introduces HeroServe, an inference serving
system that accelerates data synchronization by leveraging
heterogeneous networks. HeroServe employs a scalability-
oriented offline planner that formulates a comprehensive op-
timization model to jointly consider computation allocation
and communication scheduling. To deal with the dynamic
inference traffic, we propose a load-aware online scheduler that
continuously monitors current traffic and updates lightweight.
We prototype HeroServe on a testbed consisting of six servers
and two programmable switches. Experimental results show
that HeroServe improves scalability by 1.53 x while maintain-
ing the latency SLA compared to the state-of-the-art solution.

In the future, there are several avenues to explore. First,
for scenarios without NVLink, we will investigate how to
leverage high-performance PCle bandwidth for intra-server
communication while avoiding performance degradation due
to cross-NUMA effects. Additionally, we plan to design a
mechanism that enables rapid scaling in and out to achieve
finer-grained scheduling of computational resources.
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